{"title":"基因组测序项目揭示了哺乳动物促性腺激素释放激素 II 系统的新奥秘。","authors":"Kevin Morgan, Robert P. Millar","doi":"10.1111/jne.13431","DOIUrl":null,"url":null,"abstract":"<p>The type II gonadotropin-releasing hormone (GnRH-II) was first discovered in chicken (<i>Gallus gallus</i>) brain and then shown to be present in many vertebrates. Indeed, its structure is conserved unchanged throughout vertebrate evolution from teleost fish through to mammals suggesting a crucial function. Yet the functional significance has been largely unexplored. Studies in comparative endocrinology show that the GnRH-II system is differentially functional in mammalian species. Intact GnRH-II neuropeptide and receptor genes (<i>GnRH2</i> and GnRH receptor 2 <i>GnRHR2</i>) occur in marmoset monkeys (<i>Callithrix jacchus</i>), musk shrews (<i>Suncus murinus</i>) and pigs (<i>Sus scrofa</i>). However, one or other or both of these genes are inactivated in other species, where mutations or remnants affecting <i>GnRH</i>2 neuropeptide and/or type II <i>GnRHR</i> exons are retained in conserved genomic loci. New data from DNA sequencing projects facilitate extensive analysis of species-specific variation in these genes. Here, we describe <i>GnRH2</i> and <i>GnRHR2</i> genes spanning a collection of 21 taxonomic orders, encompassing around 140 species from Primates, Scandentia, Eulipotyphla, Rodentia, Lagomorpha, Artiodactyla, Carnivora, Perissodactyls, Pholidota, Chiroptera, Afrotheria, Xenarthra and Marsupialia. Intact coding exons for both <i>GnRH2</i> and <i>GnRHR2</i> occur in monkeys, tree shrews, shrews, moles, hedgehogs, several rodents (degu, kangaroo-rat, pocket mouse), pig, pecarry and warthog, camels and alpaca, bears, Weddell seal, hyena, elephant, aardvark and marsupials. Inactivating mutations affecting <i>GnRH2</i> and <i>GnRHR2</i>, some located at conserved sites within exons, occur in species of primates, most rodents, lagomorphs, bovidae, cetaceans, felidae, canidae and other carnivora, pangolins, most bats, armadillo, brushtail and echidna. A functional GnRH-II system appears retained within several taxonomic families of mammals, but intact retention does not extend to whole taxonomic orders. Defining how endogenous GnRH-II neuropeptide operates in different mammals may afford functional insight into its actions in the brain, especially as, unlike the type I GnRH system, it is expressed in the mid brain and not the hypothalamus.</p>","PeriodicalId":16535,"journal":{"name":"Journal of Neuroendocrinology","volume":"36 10","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genome sequencing projects reveal new insights into the mammalian Gonadotropin-releasing Hormone II system\",\"authors\":\"Kevin Morgan, Robert P. Millar\",\"doi\":\"10.1111/jne.13431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The type II gonadotropin-releasing hormone (GnRH-II) was first discovered in chicken (<i>Gallus gallus</i>) brain and then shown to be present in many vertebrates. Indeed, its structure is conserved unchanged throughout vertebrate evolution from teleost fish through to mammals suggesting a crucial function. Yet the functional significance has been largely unexplored. Studies in comparative endocrinology show that the GnRH-II system is differentially functional in mammalian species. Intact GnRH-II neuropeptide and receptor genes (<i>GnRH2</i> and GnRH receptor 2 <i>GnRHR2</i>) occur in marmoset monkeys (<i>Callithrix jacchus</i>), musk shrews (<i>Suncus murinus</i>) and pigs (<i>Sus scrofa</i>). However, one or other or both of these genes are inactivated in other species, where mutations or remnants affecting <i>GnRH</i>2 neuropeptide and/or type II <i>GnRHR</i> exons are retained in conserved genomic loci. New data from DNA sequencing projects facilitate extensive analysis of species-specific variation in these genes. Here, we describe <i>GnRH2</i> and <i>GnRHR2</i> genes spanning a collection of 21 taxonomic orders, encompassing around 140 species from Primates, Scandentia, Eulipotyphla, Rodentia, Lagomorpha, Artiodactyla, Carnivora, Perissodactyls, Pholidota, Chiroptera, Afrotheria, Xenarthra and Marsupialia. Intact coding exons for both <i>GnRH2</i> and <i>GnRHR2</i> occur in monkeys, tree shrews, shrews, moles, hedgehogs, several rodents (degu, kangaroo-rat, pocket mouse), pig, pecarry and warthog, camels and alpaca, bears, Weddell seal, hyena, elephant, aardvark and marsupials. Inactivating mutations affecting <i>GnRH2</i> and <i>GnRHR2</i>, some located at conserved sites within exons, occur in species of primates, most rodents, lagomorphs, bovidae, cetaceans, felidae, canidae and other carnivora, pangolins, most bats, armadillo, brushtail and echidna. A functional GnRH-II system appears retained within several taxonomic families of mammals, but intact retention does not extend to whole taxonomic orders. Defining how endogenous GnRH-II neuropeptide operates in different mammals may afford functional insight into its actions in the brain, especially as, unlike the type I GnRH system, it is expressed in the mid brain and not the hypothalamus.</p>\",\"PeriodicalId\":16535,\"journal\":{\"name\":\"Journal of Neuroendocrinology\",\"volume\":\"36 10\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroendocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jne.13431\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroendocrinology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jne.13431","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Genome sequencing projects reveal new insights into the mammalian Gonadotropin-releasing Hormone II system
The type II gonadotropin-releasing hormone (GnRH-II) was first discovered in chicken (Gallus gallus) brain and then shown to be present in many vertebrates. Indeed, its structure is conserved unchanged throughout vertebrate evolution from teleost fish through to mammals suggesting a crucial function. Yet the functional significance has been largely unexplored. Studies in comparative endocrinology show that the GnRH-II system is differentially functional in mammalian species. Intact GnRH-II neuropeptide and receptor genes (GnRH2 and GnRH receptor 2 GnRHR2) occur in marmoset monkeys (Callithrix jacchus), musk shrews (Suncus murinus) and pigs (Sus scrofa). However, one or other or both of these genes are inactivated in other species, where mutations or remnants affecting GnRH2 neuropeptide and/or type II GnRHR exons are retained in conserved genomic loci. New data from DNA sequencing projects facilitate extensive analysis of species-specific variation in these genes. Here, we describe GnRH2 and GnRHR2 genes spanning a collection of 21 taxonomic orders, encompassing around 140 species from Primates, Scandentia, Eulipotyphla, Rodentia, Lagomorpha, Artiodactyla, Carnivora, Perissodactyls, Pholidota, Chiroptera, Afrotheria, Xenarthra and Marsupialia. Intact coding exons for both GnRH2 and GnRHR2 occur in monkeys, tree shrews, shrews, moles, hedgehogs, several rodents (degu, kangaroo-rat, pocket mouse), pig, pecarry and warthog, camels and alpaca, bears, Weddell seal, hyena, elephant, aardvark and marsupials. Inactivating mutations affecting GnRH2 and GnRHR2, some located at conserved sites within exons, occur in species of primates, most rodents, lagomorphs, bovidae, cetaceans, felidae, canidae and other carnivora, pangolins, most bats, armadillo, brushtail and echidna. A functional GnRH-II system appears retained within several taxonomic families of mammals, but intact retention does not extend to whole taxonomic orders. Defining how endogenous GnRH-II neuropeptide operates in different mammals may afford functional insight into its actions in the brain, especially as, unlike the type I GnRH system, it is expressed in the mid brain and not the hypothalamus.
期刊介绍:
Journal of Neuroendocrinology provides the principal international focus for the newest ideas in classical neuroendocrinology and its expanding interface with the regulation of behavioural, cognitive, developmental, degenerative and metabolic processes. Through the rapid publication of original manuscripts and provocative review articles, it provides essential reading for basic scientists and clinicians researching in this rapidly expanding field.
In determining content, the primary considerations are excellence, relevance and novelty. While Journal of Neuroendocrinology reflects the broad scientific and clinical interests of the BSN membership, the editorial team, led by Professor Julian Mercer, ensures that the journal’s ethos, authorship, content and purpose are those expected of a leading international publication.