基于网络药理学评估丁香酚麻醉鱼类的分子机制。

IF 2.5 3区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Fish Physiology and Biochemistry Pub Date : 2024-12-01 Epub Date: 2024-07-23 DOI:10.1007/s10695-024-01382-x
Xiangbing Zeng, Xiaoting Zheng, Jingru Wu, Hongbiao Dong, Jiasong Zhang
{"title":"基于网络药理学评估丁香酚麻醉鱼类的分子机制。","authors":"Xiangbing Zeng, Xiaoting Zheng, Jingru Wu, Hongbiao Dong, Jiasong Zhang","doi":"10.1007/s10695-024-01382-x","DOIUrl":null,"url":null,"abstract":"<p><p>Eugenol is a commonly used fish anesthetic, but its mechanism of action is not fully understood. This study employed network pharmacology, molecular docking, and molecular dynamics simulation to explore the anesthetic targets of eugenol in fish. Initially, 63 potential targets for eugenol anesthesia were identified using databases such as SwissTarget, TargetNet, GeneCards, OMIM, and TTD. The DAVID database was utilized to analyze the GO functions and KEGG pathways of these targets, revealing 384 GO enrichment terms and 43 KEGG pathways. These terms involved neuroactive ligand-receptor interaction, calcium signaling pathway, and synaptic transmission. Subsequently, AutodockTools software facilitated molecular docking with targets in the KEGG pathway for \"neuroactive ligand-receptor interaction.\" The results showed that eugenol had a strong affinity with these proteins. Concurrently, molecular dynamics simulations were conducted on the proteins with the top four lowest binding energies (Cnr1, Oprk1, Nr3c1, and Chrm5a) in the presence of eugenol. The eugenol-protein complexes remained stable and equilibrated within the dynamic environment. The results indicated that eugenol-anesthesia might affect membrane receptors, neurotransmitters, and ion signaling. This study elucidates the anesthetic mechanism of eugenol, enriches the primary data on fish anesthesia, and offers new analytical tools for understanding the action mechanisms of fishery drugs.</p>","PeriodicalId":12274,"journal":{"name":"Fish Physiology and Biochemistry","volume":" ","pages":"2191-2205"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of the molecular mechanism in fish using eugenol as anesthesia based on network pharmacology.\",\"authors\":\"Xiangbing Zeng, Xiaoting Zheng, Jingru Wu, Hongbiao Dong, Jiasong Zhang\",\"doi\":\"10.1007/s10695-024-01382-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Eugenol is a commonly used fish anesthetic, but its mechanism of action is not fully understood. This study employed network pharmacology, molecular docking, and molecular dynamics simulation to explore the anesthetic targets of eugenol in fish. Initially, 63 potential targets for eugenol anesthesia were identified using databases such as SwissTarget, TargetNet, GeneCards, OMIM, and TTD. The DAVID database was utilized to analyze the GO functions and KEGG pathways of these targets, revealing 384 GO enrichment terms and 43 KEGG pathways. These terms involved neuroactive ligand-receptor interaction, calcium signaling pathway, and synaptic transmission. Subsequently, AutodockTools software facilitated molecular docking with targets in the KEGG pathway for \\\"neuroactive ligand-receptor interaction.\\\" The results showed that eugenol had a strong affinity with these proteins. Concurrently, molecular dynamics simulations were conducted on the proteins with the top four lowest binding energies (Cnr1, Oprk1, Nr3c1, and Chrm5a) in the presence of eugenol. The eugenol-protein complexes remained stable and equilibrated within the dynamic environment. The results indicated that eugenol-anesthesia might affect membrane receptors, neurotransmitters, and ion signaling. This study elucidates the anesthetic mechanism of eugenol, enriches the primary data on fish anesthesia, and offers new analytical tools for understanding the action mechanisms of fishery drugs.</p>\",\"PeriodicalId\":12274,\"journal\":{\"name\":\"Fish Physiology and Biochemistry\",\"volume\":\" \",\"pages\":\"2191-2205\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fish Physiology and Biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10695-024-01382-x\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish Physiology and Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10695-024-01382-x","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

丁香酚是一种常用的鱼类麻醉剂,但其作用机制尚未完全清楚。本研究采用网络药理学、分子对接和分子动力学模拟来探索丁香酚在鱼类中的麻醉靶点。首先,利用 SwissTarget、TargetNet、GeneCards、OMIM 和 TTD 等数据库确定了 63 个丁香酚麻醉的潜在靶点。利用 DAVID 数据库分析了这些靶点的 GO 功能和 KEGG 通路,发现了 384 个 GO 富集词和 43 个 KEGG 通路。这些术语涉及神经活性配体-受体相互作用、钙信号通路和突触传递。随后,AutodockTools 软件促进了与 KEGG 通路中 "神经活性配体-受体相互作用 "靶标的分子对接。结果表明,丁香酚与这些蛋白质有很强的亲和力。同时,还对结合能最低的前四种蛋白质(Cnr1、Oprk1、Nr3c1 和 Chrm5a)在丁香酚存在下进行了分子动力学模拟。丁香酚-蛋白质复合物在动态环境中保持稳定和平衡。结果表明,丁香酚麻醉可能会影响膜受体、神经递质和离子信号转导。该研究阐明了丁香酚的麻醉机制,丰富了鱼类麻醉的原始数据,为了解渔药的作用机制提供了新的分析工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of the molecular mechanism in fish using eugenol as anesthesia based on network pharmacology.

Eugenol is a commonly used fish anesthetic, but its mechanism of action is not fully understood. This study employed network pharmacology, molecular docking, and molecular dynamics simulation to explore the anesthetic targets of eugenol in fish. Initially, 63 potential targets for eugenol anesthesia were identified using databases such as SwissTarget, TargetNet, GeneCards, OMIM, and TTD. The DAVID database was utilized to analyze the GO functions and KEGG pathways of these targets, revealing 384 GO enrichment terms and 43 KEGG pathways. These terms involved neuroactive ligand-receptor interaction, calcium signaling pathway, and synaptic transmission. Subsequently, AutodockTools software facilitated molecular docking with targets in the KEGG pathway for "neuroactive ligand-receptor interaction." The results showed that eugenol had a strong affinity with these proteins. Concurrently, molecular dynamics simulations were conducted on the proteins with the top four lowest binding energies (Cnr1, Oprk1, Nr3c1, and Chrm5a) in the presence of eugenol. The eugenol-protein complexes remained stable and equilibrated within the dynamic environment. The results indicated that eugenol-anesthesia might affect membrane receptors, neurotransmitters, and ion signaling. This study elucidates the anesthetic mechanism of eugenol, enriches the primary data on fish anesthesia, and offers new analytical tools for understanding the action mechanisms of fishery drugs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fish Physiology and Biochemistry
Fish Physiology and Biochemistry 农林科学-生化与分子生物学
CiteScore
5.60
自引率
6.90%
发文量
106
审稿时长
4 months
期刊介绍: Fish Physiology and Biochemistry is an international journal publishing original research papers in all aspects of the physiology and biochemistry of fishes. Coverage includes experimental work in such topics as biochemistry of organisms, organs, tissues and cells; structure of organs, tissues, cells and organelles related to their function; nutritional, osmotic, ionic, respiratory and excretory homeostasis; nerve and muscle physiology; endocrinology; reproductive physiology; energetics; biochemical and physiological effects of toxicants; molecular biology and biotechnology and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信