{"title":"基于网络药理学评估丁香酚麻醉鱼类的分子机制。","authors":"Xiangbing Zeng, Xiaoting Zheng, Jingru Wu, Hongbiao Dong, Jiasong Zhang","doi":"10.1007/s10695-024-01382-x","DOIUrl":null,"url":null,"abstract":"<p><p>Eugenol is a commonly used fish anesthetic, but its mechanism of action is not fully understood. This study employed network pharmacology, molecular docking, and molecular dynamics simulation to explore the anesthetic targets of eugenol in fish. Initially, 63 potential targets for eugenol anesthesia were identified using databases such as SwissTarget, TargetNet, GeneCards, OMIM, and TTD. The DAVID database was utilized to analyze the GO functions and KEGG pathways of these targets, revealing 384 GO enrichment terms and 43 KEGG pathways. These terms involved neuroactive ligand-receptor interaction, calcium signaling pathway, and synaptic transmission. Subsequently, AutodockTools software facilitated molecular docking with targets in the KEGG pathway for \"neuroactive ligand-receptor interaction.\" The results showed that eugenol had a strong affinity with these proteins. Concurrently, molecular dynamics simulations were conducted on the proteins with the top four lowest binding energies (Cnr1, Oprk1, Nr3c1, and Chrm5a) in the presence of eugenol. The eugenol-protein complexes remained stable and equilibrated within the dynamic environment. The results indicated that eugenol-anesthesia might affect membrane receptors, neurotransmitters, and ion signaling. This study elucidates the anesthetic mechanism of eugenol, enriches the primary data on fish anesthesia, and offers new analytical tools for understanding the action mechanisms of fishery drugs.</p>","PeriodicalId":12274,"journal":{"name":"Fish Physiology and Biochemistry","volume":" ","pages":"2191-2205"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of the molecular mechanism in fish using eugenol as anesthesia based on network pharmacology.\",\"authors\":\"Xiangbing Zeng, Xiaoting Zheng, Jingru Wu, Hongbiao Dong, Jiasong Zhang\",\"doi\":\"10.1007/s10695-024-01382-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Eugenol is a commonly used fish anesthetic, but its mechanism of action is not fully understood. This study employed network pharmacology, molecular docking, and molecular dynamics simulation to explore the anesthetic targets of eugenol in fish. Initially, 63 potential targets for eugenol anesthesia were identified using databases such as SwissTarget, TargetNet, GeneCards, OMIM, and TTD. The DAVID database was utilized to analyze the GO functions and KEGG pathways of these targets, revealing 384 GO enrichment terms and 43 KEGG pathways. These terms involved neuroactive ligand-receptor interaction, calcium signaling pathway, and synaptic transmission. Subsequently, AutodockTools software facilitated molecular docking with targets in the KEGG pathway for \\\"neuroactive ligand-receptor interaction.\\\" The results showed that eugenol had a strong affinity with these proteins. Concurrently, molecular dynamics simulations were conducted on the proteins with the top four lowest binding energies (Cnr1, Oprk1, Nr3c1, and Chrm5a) in the presence of eugenol. The eugenol-protein complexes remained stable and equilibrated within the dynamic environment. The results indicated that eugenol-anesthesia might affect membrane receptors, neurotransmitters, and ion signaling. This study elucidates the anesthetic mechanism of eugenol, enriches the primary data on fish anesthesia, and offers new analytical tools for understanding the action mechanisms of fishery drugs.</p>\",\"PeriodicalId\":12274,\"journal\":{\"name\":\"Fish Physiology and Biochemistry\",\"volume\":\" \",\"pages\":\"2191-2205\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fish Physiology and Biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10695-024-01382-x\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish Physiology and Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10695-024-01382-x","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
丁香酚是一种常用的鱼类麻醉剂,但其作用机制尚未完全清楚。本研究采用网络药理学、分子对接和分子动力学模拟来探索丁香酚在鱼类中的麻醉靶点。首先,利用 SwissTarget、TargetNet、GeneCards、OMIM 和 TTD 等数据库确定了 63 个丁香酚麻醉的潜在靶点。利用 DAVID 数据库分析了这些靶点的 GO 功能和 KEGG 通路,发现了 384 个 GO 富集词和 43 个 KEGG 通路。这些术语涉及神经活性配体-受体相互作用、钙信号通路和突触传递。随后,AutodockTools 软件促进了与 KEGG 通路中 "神经活性配体-受体相互作用 "靶标的分子对接。结果表明,丁香酚与这些蛋白质有很强的亲和力。同时,还对结合能最低的前四种蛋白质(Cnr1、Oprk1、Nr3c1 和 Chrm5a)在丁香酚存在下进行了分子动力学模拟。丁香酚-蛋白质复合物在动态环境中保持稳定和平衡。结果表明,丁香酚麻醉可能会影响膜受体、神经递质和离子信号转导。该研究阐明了丁香酚的麻醉机制,丰富了鱼类麻醉的原始数据,为了解渔药的作用机制提供了新的分析工具。
Assessment of the molecular mechanism in fish using eugenol as anesthesia based on network pharmacology.
Eugenol is a commonly used fish anesthetic, but its mechanism of action is not fully understood. This study employed network pharmacology, molecular docking, and molecular dynamics simulation to explore the anesthetic targets of eugenol in fish. Initially, 63 potential targets for eugenol anesthesia were identified using databases such as SwissTarget, TargetNet, GeneCards, OMIM, and TTD. The DAVID database was utilized to analyze the GO functions and KEGG pathways of these targets, revealing 384 GO enrichment terms and 43 KEGG pathways. These terms involved neuroactive ligand-receptor interaction, calcium signaling pathway, and synaptic transmission. Subsequently, AutodockTools software facilitated molecular docking with targets in the KEGG pathway for "neuroactive ligand-receptor interaction." The results showed that eugenol had a strong affinity with these proteins. Concurrently, molecular dynamics simulations were conducted on the proteins with the top four lowest binding energies (Cnr1, Oprk1, Nr3c1, and Chrm5a) in the presence of eugenol. The eugenol-protein complexes remained stable and equilibrated within the dynamic environment. The results indicated that eugenol-anesthesia might affect membrane receptors, neurotransmitters, and ion signaling. This study elucidates the anesthetic mechanism of eugenol, enriches the primary data on fish anesthesia, and offers new analytical tools for understanding the action mechanisms of fishery drugs.
期刊介绍:
Fish Physiology and Biochemistry is an international journal publishing original research papers in all aspects of the physiology and biochemistry of fishes. Coverage includes experimental work in such topics as biochemistry of organisms, organs, tissues and cells; structure of organs, tissues, cells and organelles related to their function; nutritional, osmotic, ionic, respiratory and excretory homeostasis; nerve and muscle physiology; endocrinology; reproductive physiology; energetics; biochemical and physiological effects of toxicants; molecular biology and biotechnology and more.