{"title":"[基于空间嵌入信息的卷积神经网络对锥束计算机断层扫描进行牙齿分割和识别]。","authors":"Shishi Bo, Chengzhi Gao","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To propose a novel neural network to achieve tooth instance segmentation and recognition based on cone-beam computed tomography (CBCT) voxel data.</p><p><strong>Methods: </strong>The proposed methods included three different convolutional neural network models. The architecture was based on the Resnet module and built according to the structure of \"Encoder-Decoder\" and U-Net. The CBCT image was de-sampled and a fixed-size region of interest (ROI) containing all the teeth was determined. ROI would first through a two-branch \"encoder and decoder\" structure of the network, the network could predict each voxel in the input data of the spatial embedding. The post-processing algorithm would cluster the prediction results of the relevant spatial location information according to the two-branch network to realize the tooth instance segmentation. The tooth position identification was realized by another U-Net model based on the multi-classification segmentation task. According to the predicted results of the network, the post-processing algorithm would classify the tooth position according to the voting results of each tooth instance segmentation. At the original spatial resolution, a U-Net network model for the fine-tooth segmentation was trained using the region corresponding to each tooth as the input. According to the results of instance segmentation and tooth position identification, the model would process the correspon-ding positions on the high-resolution CBCT images to obtain the high-resolution tooth segmentation results. In this study, CBCT data of 59 cases with simple crown prostheses and implants were collected for manual labeling as the database, and statistical indicators were evaluated for the prediction results of the algorithm. To assess the performance of tooth segmentation and classification, instance <i>Dice</i> similarity coefficient (IDSC) and the average <i>Dice</i> similarity coefficient (ADSC) were calculated.</p><p><strong>Results: </strong>The experimental results showed that the IDSC was 89.35%, and the ADSC was 84. 74%. After eliminating the data with prostheses artifacts, the database of 43 samples was generated, and the performance of the training network was better, with 90.34% for IDSC and 87.88% for ADSC. The framework achieved excellent performance on tooth segmentation and identification. Voxels near intercuspation surfaces and fuzzy boundaries could be separated into correct instances by this framework.</p><p><strong>Conclusions: </strong>The results show that this method can not only successfully achieve 3D tooth instance segmentation but also identify all teeth notation numbers accurately, which has clinical practicability.</p>","PeriodicalId":8790,"journal":{"name":"北京大学学报(医学版)","volume":"56 4","pages":"735-740"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11284471/pdf/","citationCount":"0","resultStr":"{\"title\":\"[Tooth segmentation and identification on cone-beam computed tomography with convolutional neural network based on spatial embedding information].\",\"authors\":\"Shishi Bo, Chengzhi Gao\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To propose a novel neural network to achieve tooth instance segmentation and recognition based on cone-beam computed tomography (CBCT) voxel data.</p><p><strong>Methods: </strong>The proposed methods included three different convolutional neural network models. The architecture was based on the Resnet module and built according to the structure of \\\"Encoder-Decoder\\\" and U-Net. The CBCT image was de-sampled and a fixed-size region of interest (ROI) containing all the teeth was determined. ROI would first through a two-branch \\\"encoder and decoder\\\" structure of the network, the network could predict each voxel in the input data of the spatial embedding. The post-processing algorithm would cluster the prediction results of the relevant spatial location information according to the two-branch network to realize the tooth instance segmentation. The tooth position identification was realized by another U-Net model based on the multi-classification segmentation task. According to the predicted results of the network, the post-processing algorithm would classify the tooth position according to the voting results of each tooth instance segmentation. At the original spatial resolution, a U-Net network model for the fine-tooth segmentation was trained using the region corresponding to each tooth as the input. According to the results of instance segmentation and tooth position identification, the model would process the correspon-ding positions on the high-resolution CBCT images to obtain the high-resolution tooth segmentation results. In this study, CBCT data of 59 cases with simple crown prostheses and implants were collected for manual labeling as the database, and statistical indicators were evaluated for the prediction results of the algorithm. To assess the performance of tooth segmentation and classification, instance <i>Dice</i> similarity coefficient (IDSC) and the average <i>Dice</i> similarity coefficient (ADSC) were calculated.</p><p><strong>Results: </strong>The experimental results showed that the IDSC was 89.35%, and the ADSC was 84. 74%. After eliminating the data with prostheses artifacts, the database of 43 samples was generated, and the performance of the training network was better, with 90.34% for IDSC and 87.88% for ADSC. The framework achieved excellent performance on tooth segmentation and identification. Voxels near intercuspation surfaces and fuzzy boundaries could be separated into correct instances by this framework.</p><p><strong>Conclusions: </strong>The results show that this method can not only successfully achieve 3D tooth instance segmentation but also identify all teeth notation numbers accurately, which has clinical practicability.</p>\",\"PeriodicalId\":8790,\"journal\":{\"name\":\"北京大学学报(医学版)\",\"volume\":\"56 4\",\"pages\":\"735-740\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11284471/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"北京大学学报(医学版)\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"北京大学学报(医学版)","FirstCategoryId":"3","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
[Tooth segmentation and identification on cone-beam computed tomography with convolutional neural network based on spatial embedding information].
Objective: To propose a novel neural network to achieve tooth instance segmentation and recognition based on cone-beam computed tomography (CBCT) voxel data.
Methods: The proposed methods included three different convolutional neural network models. The architecture was based on the Resnet module and built according to the structure of "Encoder-Decoder" and U-Net. The CBCT image was de-sampled and a fixed-size region of interest (ROI) containing all the teeth was determined. ROI would first through a two-branch "encoder and decoder" structure of the network, the network could predict each voxel in the input data of the spatial embedding. The post-processing algorithm would cluster the prediction results of the relevant spatial location information according to the two-branch network to realize the tooth instance segmentation. The tooth position identification was realized by another U-Net model based on the multi-classification segmentation task. According to the predicted results of the network, the post-processing algorithm would classify the tooth position according to the voting results of each tooth instance segmentation. At the original spatial resolution, a U-Net network model for the fine-tooth segmentation was trained using the region corresponding to each tooth as the input. According to the results of instance segmentation and tooth position identification, the model would process the correspon-ding positions on the high-resolution CBCT images to obtain the high-resolution tooth segmentation results. In this study, CBCT data of 59 cases with simple crown prostheses and implants were collected for manual labeling as the database, and statistical indicators were evaluated for the prediction results of the algorithm. To assess the performance of tooth segmentation and classification, instance Dice similarity coefficient (IDSC) and the average Dice similarity coefficient (ADSC) were calculated.
Results: The experimental results showed that the IDSC was 89.35%, and the ADSC was 84. 74%. After eliminating the data with prostheses artifacts, the database of 43 samples was generated, and the performance of the training network was better, with 90.34% for IDSC and 87.88% for ADSC. The framework achieved excellent performance on tooth segmentation and identification. Voxels near intercuspation surfaces and fuzzy boundaries could be separated into correct instances by this framework.
Conclusions: The results show that this method can not only successfully achieve 3D tooth instance segmentation but also identify all teeth notation numbers accurately, which has clinical practicability.
期刊介绍:
Beijing Da Xue Xue Bao Yi Xue Ban / Journal of Peking University (Health Sciences), established in 1959, is a national academic journal sponsored by Peking University, and its former name is Journal of Beijing Medical University. The coverage of the Journal includes basic medical sciences, clinical medicine, oral medicine, surgery, public health and epidemiology, pharmacology and pharmacy. Over the last few years, the Journal has published articles and reports covering major topics in the different special issues (e.g. research on disease genome, theory of drug withdrawal, mechanism and prevention of cardiovascular and cerebrovascular diseases, stomatology, orthopaedic, public health, urology and reproductive medicine). All the topics involve latest advances in medical sciences, hot topics in specific specialties, and prevention and treatment of major diseases.
The Journal has been indexed and abstracted by PubMed Central (PMC), MEDLINE/PubMed, EBSCO, Embase, Scopus, Chemical Abstracts (CA), Western Pacific Region Index Medicus (WPR), JSTChina, and almost all the Chinese sciences and technical index systems, including Chinese Science and Technology Paper Citation Database (CSTPCD), Chinese Science Citation Database (CSCD), China BioMedical Bibliographic Database (CBM), CMCI, Chinese Biological Abstracts, China National Academic Magazine Data-Base (CNKI), Wanfang Data (ChinaInfo), etc.