用于高效硝酸盐还原成氨的 MOF-on-MOF 异质结构电催化剂。

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yingying Zou, Yuechen Yan, Qingsong Xue, Chaoqi Zhang, Tong Bao, Xinchan Zhang, Ling Yuan, Sicong Qiao, Li Song, Prof. Jin Zou, Prof. Chengzhong Yu, Prof. Chao Liu
{"title":"用于高效硝酸盐还原成氨的 MOF-on-MOF 异质结构电催化剂。","authors":"Yingying Zou,&nbsp;Yuechen Yan,&nbsp;Qingsong Xue,&nbsp;Chaoqi Zhang,&nbsp;Tong Bao,&nbsp;Xinchan Zhang,&nbsp;Ling Yuan,&nbsp;Sicong Qiao,&nbsp;Li Song,&nbsp;Prof. Jin Zou,&nbsp;Prof. Chengzhong Yu,&nbsp;Prof. Chao Liu","doi":"10.1002/anie.202409799","DOIUrl":null,"url":null,"abstract":"<p>Electrocatalytic nitrate reduction reaction (NO<sub>3</sub><sup>−</sup>RR) is an important route for sustainable NH<sub>3</sub> synthesis and environmental remediation. Metal–organic frameworks (MOFs) are one family of promising NO<sub>3</sub><sup>−</sup>RR electrocatalysts, however, there is plenty of room to improve in their performance, calling for new design principles. Herein, a MOF-on-MOF heterostructured electrocatalyst with interfacial dual active sites and build-in electric field is fabricated for efficient NO<sub>3</sub><sup>−</sup>RR to NH<sub>3</sub> production. By growing Co-HHTP (HHTP=2,3,6,7,10,11-hexahydroxytriphenylene) nanorods on Ni-BDC (BDC=1,4-benzenedicarboxylate) nanosheets, experimental and theoretical investigations demonstrate the formation of Ni−O−Co bonds at the interface of MOF-on-MOF heterostructure, leading to dual active sites tailed for NO<sub>3</sub><sup>−</sup>RR. The Ni sites facilitate the adsorption and activation of NO<sub>3</sub><sup>−</sup>, while the Co sites boost the H<sub>2</sub>O decomposition to supply active hydrogen (H<sub>ads</sub>) for N-containing intermediates hydrogenation on adjacent Ni sites, cooperatively reducing the energy barriers of NO<sub>3</sub><sup>−</sup>RR process. Together with the accelerated electron transfer enabled by built-in electric field, remarkable NO<sub>3</sub><sup>−</sup>RR performance is achieved with an NH<sub>3</sub> yield rate of 11.46 mg h<sup>−1</sup> cm<sup>−2</sup> and a Faradaic efficiency of 98.4 %, outperforming most reported MOF-based electrocatalysts. This work provides new insights into the design of high-performance NO<sub>3</sub><sup>−</sup>RR electrocatalysts.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"63 41","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MOF-on-MOF Heterostructured Electrocatalysts for Efficient Nitrate Reduction to Ammonia\",\"authors\":\"Yingying Zou,&nbsp;Yuechen Yan,&nbsp;Qingsong Xue,&nbsp;Chaoqi Zhang,&nbsp;Tong Bao,&nbsp;Xinchan Zhang,&nbsp;Ling Yuan,&nbsp;Sicong Qiao,&nbsp;Li Song,&nbsp;Prof. Jin Zou,&nbsp;Prof. Chengzhong Yu,&nbsp;Prof. Chao Liu\",\"doi\":\"10.1002/anie.202409799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electrocatalytic nitrate reduction reaction (NO<sub>3</sub><sup>−</sup>RR) is an important route for sustainable NH<sub>3</sub> synthesis and environmental remediation. Metal–organic frameworks (MOFs) are one family of promising NO<sub>3</sub><sup>−</sup>RR electrocatalysts, however, there is plenty of room to improve in their performance, calling for new design principles. Herein, a MOF-on-MOF heterostructured electrocatalyst with interfacial dual active sites and build-in electric field is fabricated for efficient NO<sub>3</sub><sup>−</sup>RR to NH<sub>3</sub> production. By growing Co-HHTP (HHTP=2,3,6,7,10,11-hexahydroxytriphenylene) nanorods on Ni-BDC (BDC=1,4-benzenedicarboxylate) nanosheets, experimental and theoretical investigations demonstrate the formation of Ni−O−Co bonds at the interface of MOF-on-MOF heterostructure, leading to dual active sites tailed for NO<sub>3</sub><sup>−</sup>RR. The Ni sites facilitate the adsorption and activation of NO<sub>3</sub><sup>−</sup>, while the Co sites boost the H<sub>2</sub>O decomposition to supply active hydrogen (H<sub>ads</sub>) for N-containing intermediates hydrogenation on adjacent Ni sites, cooperatively reducing the energy barriers of NO<sub>3</sub><sup>−</sup>RR process. Together with the accelerated electron transfer enabled by built-in electric field, remarkable NO<sub>3</sub><sup>−</sup>RR performance is achieved with an NH<sub>3</sub> yield rate of 11.46 mg h<sup>−1</sup> cm<sup>−2</sup> and a Faradaic efficiency of 98.4 %, outperforming most reported MOF-based electrocatalysts. This work provides new insights into the design of high-performance NO<sub>3</sub><sup>−</sup>RR electrocatalysts.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"63 41\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202409799\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202409799","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电催化硝酸盐还原反应(NO3-RR)是实现可持续 NH3 合成和环境修复的重要途径。金属有机框架(MOFs)是一种前景广阔的 NO3-RR 电催化剂,但其性能仍有很大的提升空间,需要采用新的设计原则。本文制备了一种具有界面双活性位点和内置电场的 MOF-on-MOF 异质结构电催化剂,用于将 NO3-RR 高效转化为 NH3。通过在 Ni-BDC (BDC=1,4-苯二甲酸酯)纳米片上生长 Co-HHTP(HHTP=2,3,6,7,10,11-六羟基三亚苯)纳米棒,实验和理论研究证明在 MOF-on-MOF 异质结构的界面上形成了 Ni-O-Co 键,从而形成了用于 NO3-RR 的双活性位点。Ni位点促进了NO3-的吸附和活化,而Co位点则促进了H2O分解,为相邻Ni位点上的含N中间体氢化提供活性氢(Hads),从而协同降低了NO3-RR过程的能量障碍。再加上内置电场加速了电子转移,NO3-RR 性能显著提高,NH3 产率达到 11.46 mg h-1 cm-2,法拉第效率达到 98.4%,优于大多数已报道的基于 MOF 的电催化剂。这项研究为高性能 NO3-RR 电催化剂的设计提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

MOF-on-MOF Heterostructured Electrocatalysts for Efficient Nitrate Reduction to Ammonia

MOF-on-MOF Heterostructured Electrocatalysts for Efficient Nitrate Reduction to Ammonia

Electrocatalytic nitrate reduction reaction (NO3RR) is an important route for sustainable NH3 synthesis and environmental remediation. Metal–organic frameworks (MOFs) are one family of promising NO3RR electrocatalysts, however, there is plenty of room to improve in their performance, calling for new design principles. Herein, a MOF-on-MOF heterostructured electrocatalyst with interfacial dual active sites and build-in electric field is fabricated for efficient NO3RR to NH3 production. By growing Co-HHTP (HHTP=2,3,6,7,10,11-hexahydroxytriphenylene) nanorods on Ni-BDC (BDC=1,4-benzenedicarboxylate) nanosheets, experimental and theoretical investigations demonstrate the formation of Ni−O−Co bonds at the interface of MOF-on-MOF heterostructure, leading to dual active sites tailed for NO3RR. The Ni sites facilitate the adsorption and activation of NO3, while the Co sites boost the H2O decomposition to supply active hydrogen (Hads) for N-containing intermediates hydrogenation on adjacent Ni sites, cooperatively reducing the energy barriers of NO3RR process. Together with the accelerated electron transfer enabled by built-in electric field, remarkable NO3RR performance is achieved with an NH3 yield rate of 11.46 mg h−1 cm−2 and a Faradaic efficiency of 98.4 %, outperforming most reported MOF-based electrocatalysts. This work provides new insights into the design of high-performance NO3RR electrocatalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信