列表解码和列表恢复的零速率阈值和新容量边界

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Nicolas Resch;Chen Yuan;Yihan Zhang
{"title":"列表解码和列表恢复的零速率阈值和新容量边界","authors":"Nicolas Resch;Chen Yuan;Yihan Zhang","doi":"10.1109/TIT.2024.3430842","DOIUrl":null,"url":null,"abstract":"In this work we consider the list-decodability and list-recoverability of arbitrary q-ary codes, for all integer values of \n<inline-formula> <tex-math>$q\\geq 2$ </tex-math></inline-formula>\n. A code is called \n<inline-formula> <tex-math>$(p,L)_{q}$ </tex-math></inline-formula>\n-list-decodable if every radius pn Hamming ball contains less than L codewords; \n<inline-formula> <tex-math>$(p,\\ell ,L)_{q}$ </tex-math></inline-formula>\n-list-recoverability is a generalization where we place radius pn Hamming balls on every point of a combinatorial rectangle with side length \n<inline-formula> <tex-math>$\\ell $ </tex-math></inline-formula>\n and again stipulate that there be less than L codewords. Our main contribution is to precisely calculate the maximum value of p for which there exist infinite families of positive rate \n<inline-formula> <tex-math>$(p,\\ell ,L)_{q}$ </tex-math></inline-formula>\n-list-recoverable codes, the quantity we call the zero-rate threshold. Denoting this value by \n<inline-formula> <tex-math>$p_{*}$ </tex-math></inline-formula>\n, we in fact show that codes correcting a \n<inline-formula> <tex-math>$p_{*}+\\varepsilon $ </tex-math></inline-formula>\n fraction of errors must have size \n<inline-formula> <tex-math>$O_{\\varepsilon }(1)$ </tex-math></inline-formula>\n, i.e., independent of n. Such a result is typically referred to as a “Plotkin bound.” To complement this, a standard random code with expurgation construction shows that there exist positive rate codes correcting a \n<inline-formula> <tex-math>$p_{*}-\\varepsilon $ </tex-math></inline-formula>\n fraction of errors. We also follow a classical proof template (typically attributed to Elias and Bassalygo) to derive from the zero-rate threshold other tradeoffs between rate and decoding radius for list-decoding and list-recovery. Technically, proving the Plotkin bound boils down to demonstrating the Schur convexity of a certain function defined on the q-simplex as well as the convexity of a univariate function derived from it. We remark that an earlier argument claimed similar results for q-ary list-decoding; however, we point out that this earlier proof is flawed.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"70 9","pages":"6211-6238"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zero-Rate Thresholds and New Capacity Bounds for List-Decoding and List-Recovery\",\"authors\":\"Nicolas Resch;Chen Yuan;Yihan Zhang\",\"doi\":\"10.1109/TIT.2024.3430842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we consider the list-decodability and list-recoverability of arbitrary q-ary codes, for all integer values of \\n<inline-formula> <tex-math>$q\\\\geq 2$ </tex-math></inline-formula>\\n. A code is called \\n<inline-formula> <tex-math>$(p,L)_{q}$ </tex-math></inline-formula>\\n-list-decodable if every radius pn Hamming ball contains less than L codewords; \\n<inline-formula> <tex-math>$(p,\\\\ell ,L)_{q}$ </tex-math></inline-formula>\\n-list-recoverability is a generalization where we place radius pn Hamming balls on every point of a combinatorial rectangle with side length \\n<inline-formula> <tex-math>$\\\\ell $ </tex-math></inline-formula>\\n and again stipulate that there be less than L codewords. Our main contribution is to precisely calculate the maximum value of p for which there exist infinite families of positive rate \\n<inline-formula> <tex-math>$(p,\\\\ell ,L)_{q}$ </tex-math></inline-formula>\\n-list-recoverable codes, the quantity we call the zero-rate threshold. Denoting this value by \\n<inline-formula> <tex-math>$p_{*}$ </tex-math></inline-formula>\\n, we in fact show that codes correcting a \\n<inline-formula> <tex-math>$p_{*}+\\\\varepsilon $ </tex-math></inline-formula>\\n fraction of errors must have size \\n<inline-formula> <tex-math>$O_{\\\\varepsilon }(1)$ </tex-math></inline-formula>\\n, i.e., independent of n. Such a result is typically referred to as a “Plotkin bound.” To complement this, a standard random code with expurgation construction shows that there exist positive rate codes correcting a \\n<inline-formula> <tex-math>$p_{*}-\\\\varepsilon $ </tex-math></inline-formula>\\n fraction of errors. We also follow a classical proof template (typically attributed to Elias and Bassalygo) to derive from the zero-rate threshold other tradeoffs between rate and decoding radius for list-decoding and list-recovery. Technically, proving the Plotkin bound boils down to demonstrating the Schur convexity of a certain function defined on the q-simplex as well as the convexity of a univariate function derived from it. We remark that an earlier argument claimed similar results for q-ary list-decoding; however, we point out that this earlier proof is flawed.\",\"PeriodicalId\":13494,\"journal\":{\"name\":\"IEEE Transactions on Information Theory\",\"volume\":\"70 9\",\"pages\":\"6211-6238\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10604818/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10604818/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们考虑了任意 qary 编码的列表可解码性和列表可恢复性,适用于 $q\geq 2$ 的所有整数值。如果每个半径为 pn 的汉明球包含的码字少于 L,那么这种编码就被称为 $(p,L)_{q}$ -列表可解码编码;$(p,\ell ,L)_{q}$ -列表可恢复性是一种概括,即我们在边长为 $\ell $ 的组合矩形的每个点上放置半径为 pn 的汉明球,并再次规定码字少于 L。我们的主要贡献是精确计算了存在无穷个正速率 $(p,\ell ,L)_{q}$ -列表可恢复编码的 p 的最大值,我们称其为零速率阈值。用 $p_{*}$ 表示这个值,我们实际上证明了纠正 $p_{*}+\varepsilon $ 部分错误的编码必须具有 $O_{\varepsilon }(1)$ 大小,即与 n 无关。作为补充,一个标准的随机码阐释结构表明,存在纠正了 $p_{*}-\varepsilon $ 部分错误的正速率码。我们还遵循经典证明模板(通常归功于 Elias 和 Bassalygo),从零速率阈值推导出列表解码和列表恢复的速率与解码半径之间的其他权衡。从技术上讲,证明普洛特金边界可以归结为证明 q-复数上定义的某个函数的舒尔凸性,以及由它导出的单变量函数的凸性。我们注意到,早先的论证声称 qary 列表解码也有类似的结果;然而,我们指出早先的证明是有缺陷的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zero-Rate Thresholds and New Capacity Bounds for List-Decoding and List-Recovery
In this work we consider the list-decodability and list-recoverability of arbitrary q-ary codes, for all integer values of $q\geq 2$ . A code is called $(p,L)_{q}$ -list-decodable if every radius pn Hamming ball contains less than L codewords; $(p,\ell ,L)_{q}$ -list-recoverability is a generalization where we place radius pn Hamming balls on every point of a combinatorial rectangle with side length $\ell $ and again stipulate that there be less than L codewords. Our main contribution is to precisely calculate the maximum value of p for which there exist infinite families of positive rate $(p,\ell ,L)_{q}$ -list-recoverable codes, the quantity we call the zero-rate threshold. Denoting this value by $p_{*}$ , we in fact show that codes correcting a $p_{*}+\varepsilon $ fraction of errors must have size $O_{\varepsilon }(1)$ , i.e., independent of n. Such a result is typically referred to as a “Plotkin bound.” To complement this, a standard random code with expurgation construction shows that there exist positive rate codes correcting a $p_{*}-\varepsilon $ fraction of errors. We also follow a classical proof template (typically attributed to Elias and Bassalygo) to derive from the zero-rate threshold other tradeoffs between rate and decoding radius for list-decoding and list-recovery. Technically, proving the Plotkin bound boils down to demonstrating the Schur convexity of a certain function defined on the q-simplex as well as the convexity of a univariate function derived from it. We remark that an earlier argument claimed similar results for q-ary list-decoding; however, we point out that this earlier proof is flawed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信