实现高效的 AutoML:利用预训练转换器进行多模态数据的流水线合成方法

IF 4.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ambarish Moharil, Joaquin Vanschoren, Prabhant Singh, Damian Tamburri
{"title":"实现高效的 AutoML:利用预训练转换器进行多模态数据的流水线合成方法","authors":"Ambarish Moharil, Joaquin Vanschoren, Prabhant Singh, Damian Tamburri","doi":"10.1007/s10994-024-06568-1","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces an Automated Machine Learning (AutoML) framework specifically designed to efficiently synthesize end-to-end multimodal machine learning pipelines. Traditional reliance on the computationally demanding Neural Architecture Search is minimized through the strategic integration of pre-trained transformer models. This innovative approach enables the effective unification of diverse data modalities into high-dimensional embeddings, streamlining the pipeline development process. We leverage an advanced Bayesian Optimization strategy, informed by meta-learning, to facilitate the warm-starting of the pipeline synthesis, thereby enhancing computational efficiency. Our methodology demonstrates its potential to create advanced and custom multimodal pipelines within limited computational resources. Extensive testing across 23 varied multimodal datasets indicates the promise and utility of our framework in diverse scenarios. The results contribute to the ongoing efforts in the AutoML field, suggesting new possibilities for efficiently handling complex multimodal data. This research represents a step towards developing more efficient and versatile tools in multimodal machine learning pipeline development, acknowledging the collaborative and ever-evolving nature of this field.\n</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"76 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards efficient AutoML: a pipeline synthesis approach leveraging pre-trained transformers for multimodal data\",\"authors\":\"Ambarish Moharil, Joaquin Vanschoren, Prabhant Singh, Damian Tamburri\",\"doi\":\"10.1007/s10994-024-06568-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper introduces an Automated Machine Learning (AutoML) framework specifically designed to efficiently synthesize end-to-end multimodal machine learning pipelines. Traditional reliance on the computationally demanding Neural Architecture Search is minimized through the strategic integration of pre-trained transformer models. This innovative approach enables the effective unification of diverse data modalities into high-dimensional embeddings, streamlining the pipeline development process. We leverage an advanced Bayesian Optimization strategy, informed by meta-learning, to facilitate the warm-starting of the pipeline synthesis, thereby enhancing computational efficiency. Our methodology demonstrates its potential to create advanced and custom multimodal pipelines within limited computational resources. Extensive testing across 23 varied multimodal datasets indicates the promise and utility of our framework in diverse scenarios. The results contribute to the ongoing efforts in the AutoML field, suggesting new possibilities for efficiently handling complex multimodal data. This research represents a step towards developing more efficient and versatile tools in multimodal machine learning pipeline development, acknowledging the collaborative and ever-evolving nature of this field.\\n</p>\",\"PeriodicalId\":49900,\"journal\":{\"name\":\"Machine Learning\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10994-024-06568-1\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10994-024-06568-1","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了自动机器学习(AutoML)框架,该框架专门用于高效合成端到端多模态机器学习管道。通过战略性地集成预训练的转换器模型,最大限度地减少了对计算要求极高的神经架构搜索的传统依赖。这种创新方法能将不同的数据模式有效地统一到高维嵌入中,从而简化管道开发流程。我们利用先进的贝叶斯优化策略,通过元学习,促进管道合成的热启动,从而提高计算效率。我们的方法展示了在有限的计算资源内创建先进的定制多模态管道的潜力。在 23 个不同的多模态数据集上进行的广泛测试表明了我们的框架在不同场景中的前景和实用性。这些结果为 AutoML 领域的持续努力做出了贡献,为高效处理复杂的多模态数据提供了新的可能性。这项研究标志着在多模态机器学习管道开发方面朝着开发更高效、更多功能的工具迈出了一步,同时也承认了这一领域的协作性和不断发展的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Towards efficient AutoML: a pipeline synthesis approach leveraging pre-trained transformers for multimodal data

Towards efficient AutoML: a pipeline synthesis approach leveraging pre-trained transformers for multimodal data

This paper introduces an Automated Machine Learning (AutoML) framework specifically designed to efficiently synthesize end-to-end multimodal machine learning pipelines. Traditional reliance on the computationally demanding Neural Architecture Search is minimized through the strategic integration of pre-trained transformer models. This innovative approach enables the effective unification of diverse data modalities into high-dimensional embeddings, streamlining the pipeline development process. We leverage an advanced Bayesian Optimization strategy, informed by meta-learning, to facilitate the warm-starting of the pipeline synthesis, thereby enhancing computational efficiency. Our methodology demonstrates its potential to create advanced and custom multimodal pipelines within limited computational resources. Extensive testing across 23 varied multimodal datasets indicates the promise and utility of our framework in diverse scenarios. The results contribute to the ongoing efforts in the AutoML field, suggesting new possibilities for efficiently handling complex multimodal data. This research represents a step towards developing more efficient and versatile tools in multimodal machine learning pipeline development, acknowledging the collaborative and ever-evolving nature of this field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machine Learning
Machine Learning 工程技术-计算机:人工智能
CiteScore
11.00
自引率
2.70%
发文量
162
审稿时长
3 months
期刊介绍: Machine Learning serves as a global platform dedicated to computational approaches in learning. The journal reports substantial findings on diverse learning methods applied to various problems, offering support through empirical studies, theoretical analysis, or connections to psychological phenomena. It demonstrates the application of learning methods to solve significant problems and aims to enhance the conduct of machine learning research with a focus on verifiable and replicable evidence in published papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信