测量多结光子功率转换器的器件级 EQE

IF 8 2区 材料科学 Q1 ENERGY & FUELS
Michael Schachtner, Meghan N. Beattie, S. Kasimir Reichmuth, Alexander Wekkeli, Gerald Siefer, Henning Helmers
{"title":"测量多结光子功率转换器的器件级 EQE","authors":"Michael Schachtner,&nbsp;Meghan N. Beattie,&nbsp;S. Kasimir Reichmuth,&nbsp;Alexander Wekkeli,&nbsp;Gerald Siefer,&nbsp;Henning Helmers","doi":"10.1002/pip.3833","DOIUrl":null,"url":null,"abstract":"<p>Multi-junction photonic power converters (PPCs) are photovoltaic cells used in photonic power transmission systems that convert monochromatic light to electricity at enhanced output voltages. The junctions of a multi-junction PPC have overlapping spectral responsivity, which poses a unique challenge for spectrally resolved external quantum efficiency (EQE) measurements. In this work, we present a novel EQE measurement technique based on a wavelength-tunable laser system and characterize the differential multi-junction device-level EQE (<i>dEQE</i><sub>MJ</sub>) as a function of the monochromatic irradiance over seven orders of magnitude. The irradiance-dependent measurements reveal three distinct irradiance regimes with different <i>dEQE</i><sub>MJ</sub>. For the experimentally studied 2-junction GaAs-based device, at medium irradiance with photocurrent densities between 0.3 and 90 mA/cm<sup>2</sup>, <i>dEQE</i><sub>MJ</sub> is independent of irradiance and follows the expected EQE of the current-limiting subcell across all wavelengths. At higher irradiance, nonlinear device response is observed and attributed to luminescent coupling between the subcells. At lower irradiances, namely, in the range of conventional EQE measurement systems, nonlinear effects appear, which mimic luminescent coupling behavior but are instead attributed to finite shunt resistance artifacts that artificially inflate <i>dEQE</i><sub>MJ</sub>. The results demonstrate the importance of measuring the device-level <i>dEQE</i><sub>MJ</sub> in the relevant irradiance regime. We propose that device-level measurements in the finite shunt artifact regime at low monochromatic irradiance should be avoided.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 11","pages":"827-836"},"PeriodicalIF":8.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3833","citationCount":"0","resultStr":"{\"title\":\"Measuring the device-level EQE of multi-junction photonic power converters\",\"authors\":\"Michael Schachtner,&nbsp;Meghan N. Beattie,&nbsp;S. Kasimir Reichmuth,&nbsp;Alexander Wekkeli,&nbsp;Gerald Siefer,&nbsp;Henning Helmers\",\"doi\":\"10.1002/pip.3833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Multi-junction photonic power converters (PPCs) are photovoltaic cells used in photonic power transmission systems that convert monochromatic light to electricity at enhanced output voltages. The junctions of a multi-junction PPC have overlapping spectral responsivity, which poses a unique challenge for spectrally resolved external quantum efficiency (EQE) measurements. In this work, we present a novel EQE measurement technique based on a wavelength-tunable laser system and characterize the differential multi-junction device-level EQE (<i>dEQE</i><sub>MJ</sub>) as a function of the monochromatic irradiance over seven orders of magnitude. The irradiance-dependent measurements reveal three distinct irradiance regimes with different <i>dEQE</i><sub>MJ</sub>. For the experimentally studied 2-junction GaAs-based device, at medium irradiance with photocurrent densities between 0.3 and 90 mA/cm<sup>2</sup>, <i>dEQE</i><sub>MJ</sub> is independent of irradiance and follows the expected EQE of the current-limiting subcell across all wavelengths. At higher irradiance, nonlinear device response is observed and attributed to luminescent coupling between the subcells. At lower irradiances, namely, in the range of conventional EQE measurement systems, nonlinear effects appear, which mimic luminescent coupling behavior but are instead attributed to finite shunt resistance artifacts that artificially inflate <i>dEQE</i><sub>MJ</sub>. The results demonstrate the importance of measuring the device-level <i>dEQE</i><sub>MJ</sub> in the relevant irradiance regime. We propose that device-level measurements in the finite shunt artifact regime at low monochromatic irradiance should be avoided.</p>\",\"PeriodicalId\":223,\"journal\":{\"name\":\"Progress in Photovoltaics\",\"volume\":\"32 11\",\"pages\":\"827-836\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3833\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Photovoltaics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pip.3833\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3833","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

多结光子功率转换器(PPC)是光子输电系统中使用的光伏电池,它能以增强的输出电压将单色光转换为电能。多结光子功率转换器的结具有重叠的光谱响应性,这给光谱分辨外部量子效率(EQE)测量带来了独特的挑战。在这项工作中,我们提出了一种基于波长可调激光系统的新型 EQE 测量技术,并将差分多结器件级 EQE (dEQEMJ) 作为七个数量级的单色辐照度函数进行了表征。与辐照度相关的测量结果揭示了具有不同 dEQEMJ 的三个不同辐照度区。对于实验研究的基于砷化镓的双结器件,在光电流密度介于 0.3 至 90 mA/cm2 的中等辐照度条件下,dEQEMJ 与辐照度无关,并且在所有波长上都遵循限流子单元的预期 EQE。在较高的辐照度下,会出现非线性器件响应,这归因于子电池之间的发光耦合。在较低的辐照度下,即在传统 EQE 测量系统的范围内,会出现非线性效应,这种效应模仿了发光耦合行为,但却被归因于有限分流电阻伪影,人为夸大了 dEQEMJ。这些结果证明了在相关辐照度条件下测量器件级 dEQEMJ 的重要性。我们建议应避免在低单色辐照度条件下进行有限分流伪影的器件级测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Measuring the device-level EQE of multi-junction photonic power converters

Measuring the device-level EQE of multi-junction photonic power converters

Measuring the device-level EQE of multi-junction photonic power converters

Multi-junction photonic power converters (PPCs) are photovoltaic cells used in photonic power transmission systems that convert monochromatic light to electricity at enhanced output voltages. The junctions of a multi-junction PPC have overlapping spectral responsivity, which poses a unique challenge for spectrally resolved external quantum efficiency (EQE) measurements. In this work, we present a novel EQE measurement technique based on a wavelength-tunable laser system and characterize the differential multi-junction device-level EQE (dEQEMJ) as a function of the monochromatic irradiance over seven orders of magnitude. The irradiance-dependent measurements reveal three distinct irradiance regimes with different dEQEMJ. For the experimentally studied 2-junction GaAs-based device, at medium irradiance with photocurrent densities between 0.3 and 90 mA/cm2, dEQEMJ is independent of irradiance and follows the expected EQE of the current-limiting subcell across all wavelengths. At higher irradiance, nonlinear device response is observed and attributed to luminescent coupling between the subcells. At lower irradiances, namely, in the range of conventional EQE measurement systems, nonlinear effects appear, which mimic luminescent coupling behavior but are instead attributed to finite shunt resistance artifacts that artificially inflate dEQEMJ. The results demonstrate the importance of measuring the device-level dEQEMJ in the relevant irradiance regime. We propose that device-level measurements in the finite shunt artifact regime at low monochromatic irradiance should be avoided.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Photovoltaics
Progress in Photovoltaics 工程技术-能源与燃料
CiteScore
18.10
自引率
7.50%
发文量
130
审稿时长
5.4 months
期刊介绍: Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers. The key criterion is that all papers submitted should report substantial “progress” in photovoltaics. Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables. Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信