Daniel Persaud, Alison S. Criscitiello, Christine Spencer, Igor Lehnherr, Derek C. G. Muir, Amila O. De Silva and Cora J. Young
{"title":"北极高纬度地区全氟烷基酸的 50 年记录:对全球和本地迁移的影响","authors":"Daniel Persaud, Alison S. Criscitiello, Christine Spencer, Igor Lehnherr, Derek C. G. Muir, Amila O. De Silva and Cora J. Young","doi":"10.1039/D4EM00219A","DOIUrl":null,"url":null,"abstract":"<p >Perfluoroalkyl acids (PFAAs) are persistent compounds that are ubiquitous globally, though some uncertainties remain in the understanding of their long-range transport mechanisms. They are frequently detected in remote locations, where local sources may be unimportant. We collected a 16.5 metre ice core on northern Ellesmere Island, Nunavut, Canada to investigate PFAA deposition trends and transport mechanisms. The dated core represents fifty years of deposition (1967–2016), which accounts for the longest deposition record of perfluoroalkylcarboxylic acids (PFCAs) in the Arctic and the longest record of perfluoroalkylsulfonic acids (PFSAs) globally. PFCAs were detected frequently after the 1990s and have been increasing since. Homologue pair correlations, molar concentration ratios, and model comparisons suggest that PFCAs are primarily formed through oxidation of volatile precursors. PFSAs showed no discernible trend, with concentrations at least an order of magnitude lower than PFCAs. We observed episodic deposition of some PFAAs, notably perfluorooctane sulfonic acid (PFOS) and perfluorobutane sulfonic acid (PFBS) before the 1990s, which may be linked to Arctic military activities. Tracer analysis suggests that marine aerosols and mineral dust are relevant as transport vectors for selected PFAAs during specific time periods. These observations highlight the complex mechanisms responsible for the transport and deposition of PFAAs in the High Arctic.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 9","pages":" 1543-1555"},"PeriodicalIF":4.3000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/em/d4em00219a?page=search","citationCount":"0","resultStr":"{\"title\":\"A 50 year record for perfluoroalkyl acids in the high arctic: implications for global and local transport†\",\"authors\":\"Daniel Persaud, Alison S. Criscitiello, Christine Spencer, Igor Lehnherr, Derek C. G. Muir, Amila O. De Silva and Cora J. Young\",\"doi\":\"10.1039/D4EM00219A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Perfluoroalkyl acids (PFAAs) are persistent compounds that are ubiquitous globally, though some uncertainties remain in the understanding of their long-range transport mechanisms. They are frequently detected in remote locations, where local sources may be unimportant. We collected a 16.5 metre ice core on northern Ellesmere Island, Nunavut, Canada to investigate PFAA deposition trends and transport mechanisms. The dated core represents fifty years of deposition (1967–2016), which accounts for the longest deposition record of perfluoroalkylcarboxylic acids (PFCAs) in the Arctic and the longest record of perfluoroalkylsulfonic acids (PFSAs) globally. PFCAs were detected frequently after the 1990s and have been increasing since. Homologue pair correlations, molar concentration ratios, and model comparisons suggest that PFCAs are primarily formed through oxidation of volatile precursors. PFSAs showed no discernible trend, with concentrations at least an order of magnitude lower than PFCAs. We observed episodic deposition of some PFAAs, notably perfluorooctane sulfonic acid (PFOS) and perfluorobutane sulfonic acid (PFBS) before the 1990s, which may be linked to Arctic military activities. Tracer analysis suggests that marine aerosols and mineral dust are relevant as transport vectors for selected PFAAs during specific time periods. These observations highlight the complex mechanisms responsible for the transport and deposition of PFAAs in the High Arctic.</p>\",\"PeriodicalId\":74,\"journal\":{\"name\":\"Environmental Science: Processes & Impacts\",\"volume\":\" 9\",\"pages\":\" 1543-1555\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/em/d4em00219a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science: Processes & Impacts\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/em/d4em00219a\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Processes & Impacts","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/em/d4em00219a","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
A 50 year record for perfluoroalkyl acids in the high arctic: implications for global and local transport†
Perfluoroalkyl acids (PFAAs) are persistent compounds that are ubiquitous globally, though some uncertainties remain in the understanding of their long-range transport mechanisms. They are frequently detected in remote locations, where local sources may be unimportant. We collected a 16.5 metre ice core on northern Ellesmere Island, Nunavut, Canada to investigate PFAA deposition trends and transport mechanisms. The dated core represents fifty years of deposition (1967–2016), which accounts for the longest deposition record of perfluoroalkylcarboxylic acids (PFCAs) in the Arctic and the longest record of perfluoroalkylsulfonic acids (PFSAs) globally. PFCAs were detected frequently after the 1990s and have been increasing since. Homologue pair correlations, molar concentration ratios, and model comparisons suggest that PFCAs are primarily formed through oxidation of volatile precursors. PFSAs showed no discernible trend, with concentrations at least an order of magnitude lower than PFCAs. We observed episodic deposition of some PFAAs, notably perfluorooctane sulfonic acid (PFOS) and perfluorobutane sulfonic acid (PFBS) before the 1990s, which may be linked to Arctic military activities. Tracer analysis suggests that marine aerosols and mineral dust are relevant as transport vectors for selected PFAAs during specific time periods. These observations highlight the complex mechanisms responsible for the transport and deposition of PFAAs in the High Arctic.
期刊介绍:
Environmental Science: Processes & Impacts publishes high quality papers in all areas of the environmental chemical sciences, including chemistry of the air, water, soil and sediment. We welcome studies on the environmental fate and effects of anthropogenic and naturally occurring contaminants, both chemical and microbiological, as well as related natural element cycling processes.