多孔电纺丝中的瞬态流动

IF 2.7 3区 工程技术 Q3 ENGINEERING, CHEMICAL
Peter L. Wright, Richard E. Wirz
{"title":"多孔电纺丝中的瞬态流动","authors":"Peter L. Wright,&nbsp;Richard E. Wirz","doi":"10.1007/s11242-024-02113-9","DOIUrl":null,"url":null,"abstract":"<div><p>Porous ionic electrospray emitters have received significant interest for space propulsion due to their performance and operational simplicity. We have developed a diffusion equation for describing the transient flow response in a porous electrospray emitter, which allows for the prediction of the settling time for flow in the porous emitter. This equation accounts for both the change in liquid storage at exposed pores on the emitter with pressure and viscous diffusion through Darcy’s law. Transient flow solutions are provided for the most common emitter topologies: pillar, cone, and wedge. Transient flow solutions describe the settling time and magnitude of current overshoot from porous electrosprays, while providing useful guidelines for reducing transient response time through emitter design. Comparing diffusion of pressure to the onset delay model for electrospray emission shows that diffusion is most relevant at higher voltages and when a porous reservoir is used. Accounting for multiple emission sites on the wedge geometry shows that emission sites settle in proportion to emission site spacing to the power − 1.74.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transient Flow in Porous Electrosprays\",\"authors\":\"Peter L. Wright,&nbsp;Richard E. Wirz\",\"doi\":\"10.1007/s11242-024-02113-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Porous ionic electrospray emitters have received significant interest for space propulsion due to their performance and operational simplicity. We have developed a diffusion equation for describing the transient flow response in a porous electrospray emitter, which allows for the prediction of the settling time for flow in the porous emitter. This equation accounts for both the change in liquid storage at exposed pores on the emitter with pressure and viscous diffusion through Darcy’s law. Transient flow solutions are provided for the most common emitter topologies: pillar, cone, and wedge. Transient flow solutions describe the settling time and magnitude of current overshoot from porous electrosprays, while providing useful guidelines for reducing transient response time through emitter design. Comparing diffusion of pressure to the onset delay model for electrospray emission shows that diffusion is most relevant at higher voltages and when a porous reservoir is used. Accounting for multiple emission sites on the wedge geometry shows that emission sites settle in proportion to emission site spacing to the power − 1.74.</p></div>\",\"PeriodicalId\":804,\"journal\":{\"name\":\"Transport in Porous Media\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport in Porous Media\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11242-024-02113-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport in Porous Media","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11242-024-02113-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

多孔离子电喷雾发射器由于其性能和操作简便性,在太空推进方面受到了极大的关注。我们开发了一个描述多孔电喷雾发射器中瞬态流动响应的扩散方程,可以预测多孔发射器中流动的沉降时间。该方程既考虑了辐射器上暴露孔隙中液体存储量随压力的变化,也考虑了通过达西定律进行的粘性扩散。瞬态流解决方案适用于最常见的发射器拓扑结构:柱形、锥形和楔形。瞬态流解决方案描述了多孔电喷雾器的沉淀时间和电流过冲幅度,同时为通过发射器设计缩短瞬态响应时间提供了有用的指导。将压力扩散与电喷雾发射的起始延迟模型进行比较后发现,在电压较高和使用多孔储层时,压力扩散最为重要。对楔形几何体上的多个发射点进行核算后发现,发射点的沉降与发射点间距成正比,功率为 -1.74。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Transient Flow in Porous Electrosprays

Transient Flow in Porous Electrosprays

Transient Flow in Porous Electrosprays

Porous ionic electrospray emitters have received significant interest for space propulsion due to their performance and operational simplicity. We have developed a diffusion equation for describing the transient flow response in a porous electrospray emitter, which allows for the prediction of the settling time for flow in the porous emitter. This equation accounts for both the change in liquid storage at exposed pores on the emitter with pressure and viscous diffusion through Darcy’s law. Transient flow solutions are provided for the most common emitter topologies: pillar, cone, and wedge. Transient flow solutions describe the settling time and magnitude of current overshoot from porous electrosprays, while providing useful guidelines for reducing transient response time through emitter design. Comparing diffusion of pressure to the onset delay model for electrospray emission shows that diffusion is most relevant at higher voltages and when a porous reservoir is used. Accounting for multiple emission sites on the wedge geometry shows that emission sites settle in proportion to emission site spacing to the power − 1.74.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transport in Porous Media
Transport in Porous Media 工程技术-工程:化工
CiteScore
5.30
自引率
7.40%
发文量
155
审稿时长
4.2 months
期刊介绍: -Publishes original research on physical, chemical, and biological aspects of transport in porous media- Papers on porous media research may originate in various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering)- Emphasizes theory, (numerical) modelling, laboratory work, and non-routine applications- Publishes work of a fundamental nature, of interest to a wide readership, that provides novel insight into porous media processes- Expanded in 2007 from 12 to 15 issues per year. Transport in Porous Media publishes original research on physical and chemical aspects of transport phenomena in rigid and deformable porous media. These phenomena, occurring in single and multiphase flow in porous domains, can be governed by extensive quantities such as mass of a fluid phase, mass of component of a phase, momentum, or energy. Moreover, porous medium deformations can be induced by the transport phenomena, by chemical and electro-chemical activities such as swelling, or by external loading through forces and displacements. These porous media phenomena may be studied by researchers from various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信