{"title":"交通系统在住房不安全中的作用:基于流动性的分析","authors":"Nandini Iyer, Ronaldo Menezes, Hugo Barbosa","doi":"10.1140/epjds/s13688-024-00489-8","DOIUrl":null,"url":null,"abstract":"<p>With trends of urbanisation on the rise, providing adequate housing to individuals remains a complex issue to be addressed. Often, the slow output of relevant housing policies, coupled with quickly increasing housing costs, leaves individuals with the burden of finding housing that is affordable and in a safe location. In this paper, we unveil how transit service to employment hubs, not just housing policies, can prevent individuals from improving their housing conditions. We approach this question in three steps, applying the workflow to 20 cities in the United States of America. First, we propose a comprehensive framework to quantify housing insecurity and assign a housing demographic to each neighbourhood. Second, we use transit-pedestrian networks and public transit timetables (GTFS feeds) to estimate the time it takes to travel between two neighbourhoods using public transportation. Third, we apply geospatial autocorrelation to identify employment hotspots for each housing demographic. Finally, we use stochastic modelling to highlight how commuting to areas associated with better housing conditions results in transit commute times of over an hour in 15 cities. Ultimately, we consider the compounded burdens that come with housing insecurity, by having poor transit access to employment areas. In doing so, we highlight the importance of understanding how negative outcomes of housing insecurity coincide with various urban mechanisms, particularly emphasising the role that public transportation plays in locking vulnerable demographics into a cycle of poverty.</p>","PeriodicalId":11887,"journal":{"name":"EPJ Data Science","volume":"26 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of transport systems in housing insecurity: a mobility-based analysis\",\"authors\":\"Nandini Iyer, Ronaldo Menezes, Hugo Barbosa\",\"doi\":\"10.1140/epjds/s13688-024-00489-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With trends of urbanisation on the rise, providing adequate housing to individuals remains a complex issue to be addressed. Often, the slow output of relevant housing policies, coupled with quickly increasing housing costs, leaves individuals with the burden of finding housing that is affordable and in a safe location. In this paper, we unveil how transit service to employment hubs, not just housing policies, can prevent individuals from improving their housing conditions. We approach this question in three steps, applying the workflow to 20 cities in the United States of America. First, we propose a comprehensive framework to quantify housing insecurity and assign a housing demographic to each neighbourhood. Second, we use transit-pedestrian networks and public transit timetables (GTFS feeds) to estimate the time it takes to travel between two neighbourhoods using public transportation. Third, we apply geospatial autocorrelation to identify employment hotspots for each housing demographic. Finally, we use stochastic modelling to highlight how commuting to areas associated with better housing conditions results in transit commute times of over an hour in 15 cities. Ultimately, we consider the compounded burdens that come with housing insecurity, by having poor transit access to employment areas. In doing so, we highlight the importance of understanding how negative outcomes of housing insecurity coincide with various urban mechanisms, particularly emphasising the role that public transportation plays in locking vulnerable demographics into a cycle of poverty.</p>\",\"PeriodicalId\":11887,\"journal\":{\"name\":\"EPJ Data Science\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Data Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1140/epjds/s13688-024-00489-8\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Data Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1140/epjds/s13688-024-00489-8","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
The role of transport systems in housing insecurity: a mobility-based analysis
With trends of urbanisation on the rise, providing adequate housing to individuals remains a complex issue to be addressed. Often, the slow output of relevant housing policies, coupled with quickly increasing housing costs, leaves individuals with the burden of finding housing that is affordable and in a safe location. In this paper, we unveil how transit service to employment hubs, not just housing policies, can prevent individuals from improving their housing conditions. We approach this question in three steps, applying the workflow to 20 cities in the United States of America. First, we propose a comprehensive framework to quantify housing insecurity and assign a housing demographic to each neighbourhood. Second, we use transit-pedestrian networks and public transit timetables (GTFS feeds) to estimate the time it takes to travel between two neighbourhoods using public transportation. Third, we apply geospatial autocorrelation to identify employment hotspots for each housing demographic. Finally, we use stochastic modelling to highlight how commuting to areas associated with better housing conditions results in transit commute times of over an hour in 15 cities. Ultimately, we consider the compounded burdens that come with housing insecurity, by having poor transit access to employment areas. In doing so, we highlight the importance of understanding how negative outcomes of housing insecurity coincide with various urban mechanisms, particularly emphasising the role that public transportation plays in locking vulnerable demographics into a cycle of poverty.
期刊介绍:
EPJ Data Science covers a broad range of research areas and applications and particularly encourages contributions from techno-socio-economic systems, where it comprises those research lines that now regard the digital “tracks” of human beings as first-order objects for scientific investigation. Topics include, but are not limited to, human behavior, social interaction (including animal societies), economic and financial systems, management and business networks, socio-technical infrastructure, health and environmental systems, the science of science, as well as general risk and crisis scenario forecasting up to and including policy advice.