全基因组精细图谱提高了因果变异的识别能力

Yang Wu, Zhili Zheng, Loic Thibaut, Michael E. Goddard, Naomi R. Wray, Peter M. Visscher, Jian Zeng
{"title":"全基因组精细图谱提高了因果变异的识别能力","authors":"Yang Wu, Zhili Zheng, Loic Thibaut, Michael E. Goddard, Naomi R. Wray, Peter M. Visscher, Jian Zeng","doi":"10.1101/2024.07.18.24310667","DOIUrl":null,"url":null,"abstract":"Fine-mapping refines genotype-phenotype association signals to identify causal variants underlying complex traits. However, current methods typically focus on individual genomic segments without considering the global genetic architecture. Here, we demonstrate the advantages of performing genome-wide fine-mapping (GWFM) and develop methods to facilitate GWFM. In simulations and real data analyses, GWFM outperforms current methods in error control, mapping power and precision, replication rate, and trans-ancestry phenotype prediction. For 48 well-powered traits in the UK Biobank, we identify causal variants that collectively explain 17% of the SNP-based heritability, and predict that fine-mapping 50% of that would require 2 million samples on average. We pinpoint a known causal variant, as proof-of-principle, at FTO for body mass index, unveil a hidden secondary variant with evolutionary conservation, and identify new missense causal variants for schizophrenia and Crohn disease. Overall, we analyse 600 complex traits with 13 million SNPs, highlighting the efficacy of GWFM with functional annotations.","PeriodicalId":501375,"journal":{"name":"medRxiv - Genetic and Genomic Medicine","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genome-wide fine-mapping improves identification of causal variants\",\"authors\":\"Yang Wu, Zhili Zheng, Loic Thibaut, Michael E. Goddard, Naomi R. Wray, Peter M. Visscher, Jian Zeng\",\"doi\":\"10.1101/2024.07.18.24310667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fine-mapping refines genotype-phenotype association signals to identify causal variants underlying complex traits. However, current methods typically focus on individual genomic segments without considering the global genetic architecture. Here, we demonstrate the advantages of performing genome-wide fine-mapping (GWFM) and develop methods to facilitate GWFM. In simulations and real data analyses, GWFM outperforms current methods in error control, mapping power and precision, replication rate, and trans-ancestry phenotype prediction. For 48 well-powered traits in the UK Biobank, we identify causal variants that collectively explain 17% of the SNP-based heritability, and predict that fine-mapping 50% of that would require 2 million samples on average. We pinpoint a known causal variant, as proof-of-principle, at FTO for body mass index, unveil a hidden secondary variant with evolutionary conservation, and identify new missense causal variants for schizophrenia and Crohn disease. Overall, we analyse 600 complex traits with 13 million SNPs, highlighting the efficacy of GWFM with functional annotations.\",\"PeriodicalId\":501375,\"journal\":{\"name\":\"medRxiv - Genetic and Genomic Medicine\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Genetic and Genomic Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.07.18.24310667\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Genetic and Genomic Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.18.24310667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

精细图谱可完善基因型-表型关联信号,从而确定复杂性状的因果变异。然而,目前的方法通常只关注单个基因组片段,而不考虑整体遗传结构。在这里,我们展示了进行全基因组精细作图(GWFM)的优势,并开发了促进 GWFM 的方法。在模拟和实际数据分析中,GWFM 在误差控制、绘图能力和精度、复制率以及跨种系表型预测方面都优于现有方法。对于英国生物库中的 48 个幂效良好的性状,我们找出了能共同解释 17% 基于 SNP 遗传性的因果变异,并预测其中 50% 的精细作图平均需要 200 万个样本。我们确定了一个已知的因果变异(作为原则性证明),即体重指数的 FTO,揭示了一个具有进化保护作用的隐藏次要变异,并确定了精神分裂症和克罗恩病的新的错义因果变异。总之,我们分析了 600 个复杂性状的 1,300 万个 SNPs,凸显了带有功能注释的 GWFM 的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genome-wide fine-mapping improves identification of causal variants
Fine-mapping refines genotype-phenotype association signals to identify causal variants underlying complex traits. However, current methods typically focus on individual genomic segments without considering the global genetic architecture. Here, we demonstrate the advantages of performing genome-wide fine-mapping (GWFM) and develop methods to facilitate GWFM. In simulations and real data analyses, GWFM outperforms current methods in error control, mapping power and precision, replication rate, and trans-ancestry phenotype prediction. For 48 well-powered traits in the UK Biobank, we identify causal variants that collectively explain 17% of the SNP-based heritability, and predict that fine-mapping 50% of that would require 2 million samples on average. We pinpoint a known causal variant, as proof-of-principle, at FTO for body mass index, unveil a hidden secondary variant with evolutionary conservation, and identify new missense causal variants for schizophrenia and Crohn disease. Overall, we analyse 600 complex traits with 13 million SNPs, highlighting the efficacy of GWFM with functional annotations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信