作为扭曲环群的紧凑异常李代数𝔤^{𝔠}₂

Pub Date : 2024-03-09 DOI:10.1090/proc/16821
Cristina Draper
{"title":"作为扭曲环群的紧凑异常李代数𝔤^{𝔠}₂","authors":"Cristina Draper","doi":"10.1090/proc/16821","DOIUrl":null,"url":null,"abstract":"<p>A new highly symmetrical model of the compact Lie algebra <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German g 2 Superscript c\"> <mml:semantics> <mml:msubsup> <mml:mrow> <mml:mi mathvariant=\"fraktur\">g</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> <mml:mi>c</mml:mi> </mml:msubsup> <mml:annotation encoding=\"application/x-tex\">\\mathfrak {g}^c_2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is provided as a twisted ring group for the group <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Z 2 cubed\"> <mml:semantics> <mml:msubsup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> <mml:mn>3</mml:mn> </mml:msubsup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {Z}_2^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and the ring <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R circled-plus double-struck upper R\"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mo>⊕</mml:mo> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}\\oplus \\mathbb {R}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The model is self-contained and can be used without previous knowledge on roots, derivations on octonions or cross products. In particular, it provides an orthogonal basis with integer structure constants, consisting entirely of semisimple elements, which is a generalization of the Pauli matrices in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German s German u left-parenthesis 2 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"fraktur\">s</mml:mi> <mml:mi mathvariant=\"fraktur\">u</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>2</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathfrak {su}(2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and of the Gell-Mann matrices in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German s German u left-parenthesis 3 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"fraktur\">s</mml:mi> <mml:mi mathvariant=\"fraktur\">u</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>3</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathfrak {su}(3)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. As a bonus, the split Lie algebra <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German g 2\"> <mml:semantics> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"fraktur\">g</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\mathfrak {g}_2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is also seen as a twisted ring group.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The compact exceptional Lie algebra 𝔤^{𝔠}₂ as a twisted ring group\",\"authors\":\"Cristina Draper\",\"doi\":\"10.1090/proc/16821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A new highly symmetrical model of the compact Lie algebra <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"German g 2 Superscript c\\\"> <mml:semantics> <mml:msubsup> <mml:mrow> <mml:mi mathvariant=\\\"fraktur\\\">g</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> <mml:mi>c</mml:mi> </mml:msubsup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathfrak {g}^c_2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is provided as a twisted ring group for the group <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper Z 2 cubed\\\"> <mml:semantics> <mml:msubsup> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> <mml:mn>3</mml:mn> </mml:msubsup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {Z}_2^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and the ring <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper R circled-plus double-struck upper R\\\"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> <mml:mo>⊕</mml:mo> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {R}\\\\oplus \\\\mathbb {R}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The model is self-contained and can be used without previous knowledge on roots, derivations on octonions or cross products. In particular, it provides an orthogonal basis with integer structure constants, consisting entirely of semisimple elements, which is a generalization of the Pauli matrices in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"German s German u left-parenthesis 2 right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"fraktur\\\">s</mml:mi> <mml:mi mathvariant=\\\"fraktur\\\">u</mml:mi> </mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mn>2</mml:mn> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathfrak {su}(2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and of the Gell-Mann matrices in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"German s German u left-parenthesis 3 right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"fraktur\\\">s</mml:mi> <mml:mi mathvariant=\\\"fraktur\\\">u</mml:mi> </mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mn>3</mml:mn> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathfrak {su}(3)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. As a bonus, the split Lie algebra <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"German g 2\\\"> <mml:semantics> <mml:msub> <mml:mrow> <mml:mi mathvariant=\\\"fraktur\\\">g</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathfrak {g}_2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is also seen as a twisted ring group.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提供了紧凑李代数 g 2 c \mathfrak {g}^c_2 的一个新的高度对称模型,作为 Z 2 3 \mathbb {Z}_2^3 群和环 R ⊕ R \mathbb {R}\mathbb {R}oplus \mathbb {R} 的一个扭曲环群。这个模型是自足的,可以在没有关于根、八元数的推导或交叉积的知识的情况下使用。特别是,它提供了一个具有整数结构常量的正交基础,完全由半简单元素组成,是 s u ( 2 ) \mathfrak {su}(2) 中的保利矩阵和 s u ( 3 ) \mathfrak {su}(3) 中的盖尔-曼矩阵的广义化。作为奖励,分裂的李代数 g 2 (mathfrak {g}_2 )也被视为一个扭曲的环群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The compact exceptional Lie algebra 𝔤^{𝔠}₂ as a twisted ring group

A new highly symmetrical model of the compact Lie algebra g 2 c \mathfrak {g}^c_2 is provided as a twisted ring group for the group Z 2 3 \mathbb {Z}_2^3 and the ring R R \mathbb {R}\oplus \mathbb {R} . The model is self-contained and can be used without previous knowledge on roots, derivations on octonions or cross products. In particular, it provides an orthogonal basis with integer structure constants, consisting entirely of semisimple elements, which is a generalization of the Pauli matrices in s u ( 2 ) \mathfrak {su}(2) and of the Gell-Mann matrices in s u ( 3 ) \mathfrak {su}(3) . As a bonus, the split Lie algebra g 2 \mathfrak {g}_2 is also seen as a twisted ring group.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信