顶点代数上扭曲弱模块的舒尔-韦尔型对偶性

IF 0.8 3区 数学 Q2 MATHEMATICS
Kenichiro Tanabe
{"title":"顶点代数上扭曲弱模块的舒尔-韦尔型对偶性","authors":"Kenichiro Tanabe","doi":"10.1090/proc/16843","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V\"> <mml:semantics> <mml:mi>V</mml:mi> <mml:annotation encoding=\"application/x-tex\">V</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a vertex algebra of countable dimension, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a subgroup of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A u t upper V\"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mi>u</mml:mi> <mml:mi>t</mml:mi> <mml:mi>V</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">AutV</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of finite order, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V Superscript upper G\"> <mml:semantics> <mml:msup> <mml:mi>V</mml:mi> <mml:mrow> <mml:mi>G</mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">V^{G}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> the fixed point subalgebra of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V\"> <mml:semantics> <mml:mi>V</mml:mi> <mml:annotation encoding=\"application/x-tex\">V</mml:annotation> </mml:semantics> </mml:math> </inline-formula> under the action of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper S\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"script\">S</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathscr {S}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a finite <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-stable set of inequivalent irreducible twisted weak <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V\"> <mml:semantics> <mml:mi>V</mml:mi> <mml:annotation encoding=\"application/x-tex\">V</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-modules associated with possibly different automorphisms in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We show a Schur–Weyl type duality for the actions of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper A Subscript alpha Baseline left-parenthesis upper G comma script upper S right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"script\">A</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>α</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>,</mml:mo> <mml:mrow> <mml:mi mathvariant=\"script\">S</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathscr {A}_{\\alpha }(G,\\mathscr {S})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V Superscript upper G\"> <mml:semantics> <mml:msup> <mml:mi>V</mml:mi> <mml:mi>G</mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">V^G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on the direct sum of twisted weak <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V\"> <mml:semantics> <mml:mi>V</mml:mi> <mml:annotation encoding=\"application/x-tex\">V</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-modules in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper S\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"script\">S</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathscr {S}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper A Subscript alpha Baseline left-parenthesis upper G comma script upper S right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"script\">A</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>α</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>,</mml:mo> <mml:mrow> <mml:mi mathvariant=\"script\">S</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathscr {A}_{\\alpha }(G,\\mathscr {S})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a finite dimensional semisimple associative algebra associated with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G comma script upper S\"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mo>,</mml:mo> <mml:mrow> <mml:mi mathvariant=\"script\">S</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">G,\\mathscr {S}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and a <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\"> <mml:semantics> <mml:mn>2</mml:mn> <mml:annotation encoding=\"application/x-tex\">2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-cocycle <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha\"> <mml:semantics> <mml:mi>α</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\alpha</mml:annotation> </mml:semantics> </mml:math> </inline-formula> naturally determined by the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-action on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper S\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"script\">S</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathscr {S}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. It follows as a natural consequence of the result that for any <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g element-of upper G\"> <mml:semantics> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>G</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">g\\in G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> every irreducible <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g\"> <mml:semantics> <mml:mi>g</mml:mi> <mml:annotation encoding=\"application/x-tex\">g</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-twisted weak <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V\"> <mml:semantics> <mml:mi>V</mml:mi> <mml:annotation encoding=\"application/x-tex\">V</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-module is a completely reducible weak <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V Superscript upper G\"> <mml:semantics> <mml:msup> <mml:mi>V</mml:mi> <mml:mi>G</mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">V^G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-module.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"27 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Schur-Weyl type duality for twisted weak modules over a vertex algebra\",\"authors\":\"Kenichiro Tanabe\",\"doi\":\"10.1090/proc/16843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper V\\\"> <mml:semantics> <mml:mi>V</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">V</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a vertex algebra of countable dimension, <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a subgroup of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A u t upper V\\\"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mi>u</mml:mi> <mml:mi>t</mml:mi> <mml:mi>V</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">AutV</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of finite order, <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper V Superscript upper G\\\"> <mml:semantics> <mml:msup> <mml:mi>V</mml:mi> <mml:mrow> <mml:mi>G</mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">V^{G}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> the fixed point subalgebra of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper V\\\"> <mml:semantics> <mml:mi>V</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">V</mml:annotation> </mml:semantics> </mml:math> </inline-formula> under the action of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper S\\\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">S</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathscr {S}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a finite <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-stable set of inequivalent irreducible twisted weak <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper V\\\"> <mml:semantics> <mml:mi>V</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">V</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-modules associated with possibly different automorphisms in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We show a Schur–Weyl type duality for the actions of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper A Subscript alpha Baseline left-parenthesis upper G comma script upper S right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">A</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>α</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>,</mml:mo> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">S</mml:mi> </mml:mrow> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathscr {A}_{\\\\alpha }(G,\\\\mathscr {S})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper V Superscript upper G\\\"> <mml:semantics> <mml:msup> <mml:mi>V</mml:mi> <mml:mi>G</mml:mi> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">V^G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on the direct sum of twisted weak <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper V\\\"> <mml:semantics> <mml:mi>V</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">V</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-modules in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper S\\\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">S</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathscr {S}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> where <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper A Subscript alpha Baseline left-parenthesis upper G comma script upper S right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">A</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>α</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>,</mml:mo> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">S</mml:mi> </mml:mrow> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathscr {A}_{\\\\alpha }(G,\\\\mathscr {S})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a finite dimensional semisimple associative algebra associated with <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G comma script upper S\\\"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mo>,</mml:mo> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">S</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">G,\\\\mathscr {S}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and a <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"2\\\"> <mml:semantics> <mml:mn>2</mml:mn> <mml:annotation encoding=\\\"application/x-tex\\\">2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-cocycle <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"alpha\\\"> <mml:semantics> <mml:mi>α</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\alpha</mml:annotation> </mml:semantics> </mml:math> </inline-formula> naturally determined by the <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-action on <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper S\\\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">S</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathscr {S}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. It follows as a natural consequence of the result that for any <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"g element-of upper G\\\"> <mml:semantics> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>G</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">g\\\\in G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> every irreducible <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"g\\\"> <mml:semantics> <mml:mi>g</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">g</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-twisted weak <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper V\\\"> <mml:semantics> <mml:mi>V</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">V</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-module is a completely reducible weak <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper V Superscript upper G\\\"> <mml:semantics> <mml:msup> <mml:mi>V</mml:mi> <mml:mi>G</mml:mi> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">V^G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-module.</p>\",\"PeriodicalId\":20696,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16843\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16843","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 V V 是一个可数维度的顶点代数,G G 是 A u t V AutV 的一个有限阶的子群,V G V^{G} 是 V V 在 G G 作用下的定点子代数,而 S \mathscr {S} 是一个有限的 G G 稳定集合,由与 G G 中可能不同的自变量相关联的不等价的不可还原的扭曲弱 V V 模块组成。我们展示了 A α ( G , S ) \mathscr {A}_{\alpha }(G,\mathscr {S}) 和 V G V^G 对 S \mathscr {S} 中扭曲弱 V V 模量的直接和的作用的舒尔-韦尔型对偶性,其中 A α ( G 、 S ) 是与 G , S G , \mathscr {S} 相关联的有限维半简单关联代数,以及由 G G 在 S \mathscr {S} 上的作用自然决定的 2 2 -环 α \alpha 。结果的一个自然结果是,对于任意 g ∈ G g\in G,每一个不可还原的 g g -扭曲弱 V V -模块都是一个完全可还原的弱 V G V^G -模块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Schur-Weyl type duality for twisted weak modules over a vertex algebra

Let V V be a vertex algebra of countable dimension, G G a subgroup of A u t V AutV of finite order, V G V^{G} the fixed point subalgebra of V V under the action of G G , and S \mathscr {S} a finite G G -stable set of inequivalent irreducible twisted weak V V -modules associated with possibly different automorphisms in G G . We show a Schur–Weyl type duality for the actions of A α ( G , S ) \mathscr {A}_{\alpha }(G,\mathscr {S}) and V G V^G on the direct sum of twisted weak V V -modules in S \mathscr {S} where A α ( G , S ) \mathscr {A}_{\alpha }(G,\mathscr {S}) is a finite dimensional semisimple associative algebra associated with G , S G,\mathscr {S} , and a 2 2 -cocycle α \alpha naturally determined by the G G -action on S \mathscr {S} . It follows as a natural consequence of the result that for any g G g\in G every irreducible g g -twisted weak V V -module is a completely reducible weak V G V^G -module.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
207
审稿时长
2-4 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信