{"title":"顶点代数上扭曲弱模块的舒尔-韦尔型对偶性","authors":"Kenichiro Tanabe","doi":"10.1090/proc/16843","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V\"> <mml:semantics> <mml:mi>V</mml:mi> <mml:annotation encoding=\"application/x-tex\">V</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a vertex algebra of countable dimension, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a subgroup of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A u t upper V\"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mi>u</mml:mi> <mml:mi>t</mml:mi> <mml:mi>V</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">AutV</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of finite order, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V Superscript upper G\"> <mml:semantics> <mml:msup> <mml:mi>V</mml:mi> <mml:mrow> <mml:mi>G</mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">V^{G}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> the fixed point subalgebra of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V\"> <mml:semantics> <mml:mi>V</mml:mi> <mml:annotation encoding=\"application/x-tex\">V</mml:annotation> </mml:semantics> </mml:math> </inline-formula> under the action of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper S\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"script\">S</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathscr {S}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a finite <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-stable set of inequivalent irreducible twisted weak <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V\"> <mml:semantics> <mml:mi>V</mml:mi> <mml:annotation encoding=\"application/x-tex\">V</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-modules associated with possibly different automorphisms in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We show a Schur–Weyl type duality for the actions of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper A Subscript alpha Baseline left-parenthesis upper G comma script upper S right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"script\">A</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>α</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>,</mml:mo> <mml:mrow> <mml:mi mathvariant=\"script\">S</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathscr {A}_{\\alpha }(G,\\mathscr {S})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V Superscript upper G\"> <mml:semantics> <mml:msup> <mml:mi>V</mml:mi> <mml:mi>G</mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">V^G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on the direct sum of twisted weak <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V\"> <mml:semantics> <mml:mi>V</mml:mi> <mml:annotation encoding=\"application/x-tex\">V</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-modules in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper S\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"script\">S</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathscr {S}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper A Subscript alpha Baseline left-parenthesis upper G comma script upper S right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"script\">A</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>α</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>,</mml:mo> <mml:mrow> <mml:mi mathvariant=\"script\">S</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathscr {A}_{\\alpha }(G,\\mathscr {S})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a finite dimensional semisimple associative algebra associated with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G comma script upper S\"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mo>,</mml:mo> <mml:mrow> <mml:mi mathvariant=\"script\">S</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">G,\\mathscr {S}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and a <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\"> <mml:semantics> <mml:mn>2</mml:mn> <mml:annotation encoding=\"application/x-tex\">2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-cocycle <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha\"> <mml:semantics> <mml:mi>α</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\alpha</mml:annotation> </mml:semantics> </mml:math> </inline-formula> naturally determined by the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-action on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper S\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"script\">S</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathscr {S}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. It follows as a natural consequence of the result that for any <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g element-of upper G\"> <mml:semantics> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>G</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">g\\in G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> every irreducible <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g\"> <mml:semantics> <mml:mi>g</mml:mi> <mml:annotation encoding=\"application/x-tex\">g</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-twisted weak <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V\"> <mml:semantics> <mml:mi>V</mml:mi> <mml:annotation encoding=\"application/x-tex\">V</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-module is a completely reducible weak <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V Superscript upper G\"> <mml:semantics> <mml:msup> <mml:mi>V</mml:mi> <mml:mi>G</mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">V^G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-module.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"27 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Schur-Weyl type duality for twisted weak modules over a vertex algebra\",\"authors\":\"Kenichiro Tanabe\",\"doi\":\"10.1090/proc/16843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper V\\\"> <mml:semantics> <mml:mi>V</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">V</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a vertex algebra of countable dimension, <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a subgroup of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A u t upper V\\\"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mi>u</mml:mi> <mml:mi>t</mml:mi> <mml:mi>V</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">AutV</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of finite order, <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper V Superscript upper G\\\"> <mml:semantics> <mml:msup> <mml:mi>V</mml:mi> <mml:mrow> <mml:mi>G</mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">V^{G}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> the fixed point subalgebra of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper V\\\"> <mml:semantics> <mml:mi>V</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">V</mml:annotation> </mml:semantics> </mml:math> </inline-formula> under the action of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper S\\\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">S</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathscr {S}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a finite <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-stable set of inequivalent irreducible twisted weak <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper V\\\"> <mml:semantics> <mml:mi>V</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">V</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-modules associated with possibly different automorphisms in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We show a Schur–Weyl type duality for the actions of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper A Subscript alpha Baseline left-parenthesis upper G comma script upper S right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">A</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>α</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>,</mml:mo> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">S</mml:mi> </mml:mrow> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathscr {A}_{\\\\alpha }(G,\\\\mathscr {S})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper V Superscript upper G\\\"> <mml:semantics> <mml:msup> <mml:mi>V</mml:mi> <mml:mi>G</mml:mi> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">V^G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on the direct sum of twisted weak <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper V\\\"> <mml:semantics> <mml:mi>V</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">V</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-modules in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper S\\\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">S</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathscr {S}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> where <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper A Subscript alpha Baseline left-parenthesis upper G comma script upper S right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">A</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>α</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>,</mml:mo> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">S</mml:mi> </mml:mrow> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathscr {A}_{\\\\alpha }(G,\\\\mathscr {S})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a finite dimensional semisimple associative algebra associated with <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G comma script upper S\\\"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mo>,</mml:mo> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">S</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">G,\\\\mathscr {S}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and a <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"2\\\"> <mml:semantics> <mml:mn>2</mml:mn> <mml:annotation encoding=\\\"application/x-tex\\\">2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-cocycle <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"alpha\\\"> <mml:semantics> <mml:mi>α</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\alpha</mml:annotation> </mml:semantics> </mml:math> </inline-formula> naturally determined by the <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-action on <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper S\\\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">S</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathscr {S}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. It follows as a natural consequence of the result that for any <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"g element-of upper G\\\"> <mml:semantics> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>G</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">g\\\\in G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> every irreducible <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"g\\\"> <mml:semantics> <mml:mi>g</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">g</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-twisted weak <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper V\\\"> <mml:semantics> <mml:mi>V</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">V</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-module is a completely reducible weak <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper V Superscript upper G\\\"> <mml:semantics> <mml:msup> <mml:mi>V</mml:mi> <mml:mi>G</mml:mi> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">V^G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-module.</p>\",\"PeriodicalId\":20696,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16843\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16843","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让 V V 是一个可数维度的顶点代数,G G 是 A u t V AutV 的一个有限阶的子群,V G V^{G} 是 V V 在 G G 作用下的定点子代数,而 S \mathscr {S} 是一个有限的 G G 稳定集合,由与 G G 中可能不同的自变量相关联的不等价的不可还原的扭曲弱 V V 模块组成。我们展示了 A α ( G , S ) \mathscr {A}_{\alpha }(G,\mathscr {S}) 和 V G V^G 对 S \mathscr {S} 中扭曲弱 V V 模量的直接和的作用的舒尔-韦尔型对偶性,其中 A α ( G 、 S ) 是与 G , S G , \mathscr {S} 相关联的有限维半简单关联代数,以及由 G G 在 S \mathscr {S} 上的作用自然决定的 2 2 -环 α \alpha 。结果的一个自然结果是,对于任意 g ∈ G g\in G,每一个不可还原的 g g -扭曲弱 V V -模块都是一个完全可还原的弱 V G V^G -模块。
A Schur-Weyl type duality for twisted weak modules over a vertex algebra
Let VV be a vertex algebra of countable dimension, GG a subgroup of AutVAutV of finite order, VGV^{G} the fixed point subalgebra of VV under the action of GG, and S\mathscr {S} a finite GG-stable set of inequivalent irreducible twisted weak VV-modules associated with possibly different automorphisms in GG. We show a Schur–Weyl type duality for the actions of Aα(G,S)\mathscr {A}_{\alpha }(G,\mathscr {S}) and VGV^G on the direct sum of twisted weak VV-modules in S\mathscr {S} where Aα(G,S)\mathscr {A}_{\alpha }(G,\mathscr {S}) is a finite dimensional semisimple associative algebra associated with G,SG,\mathscr {S}, and a 22-cocycle α\alpha naturally determined by the GG-action on S\mathscr {S}. It follows as a natural consequence of the result that for any g∈Gg\in G every irreducible gg-twisted weak VV-module is a completely reducible weak VGV^G-module.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.