薛定谔方程解的斯特里查兹类型估计

Pub Date : 2024-04-19 DOI:10.1090/proc/16887
Jie Chen
{"title":"薛定谔方程解的斯特里查兹类型估计","authors":"Jie Chen","doi":"10.1090/proc/16887","DOIUrl":null,"url":null,"abstract":"<p>In this article, we show the necessary and sufficient conditions for the inequality <disp-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-vertical-bar u double-vertical-bar Subscript upper L Sub Subscript t Sub Superscript q Subscript upper L Sub Subscript x Sub Superscript r Subscript Baseline less-than-or-equivalent-to double-vertical-bar u double-vertical-bar Subscript upper X Sub Superscript s comma b Subscript Baseline comma\"> <mml:semantics> <mml:mrow> <mml:mo fence=\"false\" stretchy=\"false\">‖</mml:mo> <mml:mi>u</mml:mi> <mml:msub> <mml:mo fence=\"false\" stretchy=\"false\">‖</mml:mo> <mml:mrow> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mi>t</mml:mi> <mml:mi>q</mml:mi> </mml:msubsup> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mi>x</mml:mi> <mml:mi>r</mml:mi> </mml:msubsup> </mml:mrow> </mml:msub> <mml:mo>≲</mml:mo> <mml:mo fence=\"false\" stretchy=\"false\">‖</mml:mo> <mml:mi>u</mml:mi> <mml:msub> <mml:mo fence=\"false\" stretchy=\"false\">‖</mml:mo> <mml:mrow> <mml:msup> <mml:mi>X</mml:mi> <mml:mrow> <mml:mi>s</mml:mi> <mml:mo>,</mml:mo> <mml:mi>b</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} \\|u\\|_{L_t^qL_x^r}\\lesssim \\|u\\|_{X^{s,b}}, \\end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-vertical-bar u double-vertical-bar Subscript upper X Sub Superscript s comma b Baseline colon-equal double-vertical-bar ModifyingAbove u With caret left-parenthesis tau comma xi right-parenthesis mathematical left-angle xi mathematical right-angle Superscript s Baseline mathematical left-angle tau plus StartAbsoluteValue xi EndAbsoluteValue squared mathematical right-angle Superscript b Baseline double-vertical-bar Subscript upper L Sub Subscript tau comma xi Sub Superscript 2\"> <mml:semantics> <mml:mrow> <mml:mo fence=\"false\" stretchy=\"false\">‖</mml:mo> <mml:mi>u</mml:mi> <mml:msub> <mml:mo fence=\"false\" stretchy=\"false\">‖</mml:mo> <mml:mrow> <mml:msup> <mml:mi>X</mml:mi> <mml:mrow> <mml:mi>s</mml:mi> <mml:mo>,</mml:mo> <mml:mi>b</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> </mml:msub> <mml:mo>≔</mml:mo> <mml:mo fence=\"false\" stretchy=\"false\">‖</mml:mo> <mml:mrow> <mml:mover> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">^</mml:mo> </mml:mover> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>τ</mml:mi> <mml:mo>,</mml:mo> <mml:mi>ξ</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo fence=\"false\" stretchy=\"false\">⟨</mml:mo> <mml:mi>ξ</mml:mi> <mml:msup> <mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo> <mml:mi>s</mml:mi> </mml:msup> <mml:mo fence=\"false\" stretchy=\"false\">⟨</mml:mo> <mml:mi>τ</mml:mi> <mml:mo>+</mml:mo> <mml:mrow> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>ξ</mml:mi> <mml:msup> <mml:mrow> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:msup> <mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo> <mml:mi>b</mml:mi> </mml:msup> <mml:msub> <mml:mo fence=\"false\" stretchy=\"false\">‖</mml:mo> <mml:mrow> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mrow> <mml:mi>τ</mml:mi> <mml:mo>,</mml:mo> <mml:mi>ξ</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msubsup> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\|u\\|_{X^{s,b}}≔\\|\\hat {u}(\\tau ,\\xi )\\langle \\xi \\rangle ^s\\langle \\tau +|\\xi |^2\\rangle ^b \\|_{L_{\\tau ,\\xi }^2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. These estimates are also referred to as Strichartz estimates related to Schrödinger equation. We also give a new proof of the maximal function estimates for solutions to Schrödinger and Airy equations.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strichartz type estimates for solutions to the Schrödinger equation\",\"authors\":\"Jie Chen\",\"doi\":\"10.1090/proc/16887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we show the necessary and sufficient conditions for the inequality <disp-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-vertical-bar u double-vertical-bar Subscript upper L Sub Subscript t Sub Superscript q Subscript upper L Sub Subscript x Sub Superscript r Subscript Baseline less-than-or-equivalent-to double-vertical-bar u double-vertical-bar Subscript upper X Sub Superscript s comma b Subscript Baseline comma\\\"> <mml:semantics> <mml:mrow> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">‖</mml:mo> <mml:mi>u</mml:mi> <mml:msub> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">‖</mml:mo> <mml:mrow> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mi>t</mml:mi> <mml:mi>q</mml:mi> </mml:msubsup> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mi>x</mml:mi> <mml:mi>r</mml:mi> </mml:msubsup> </mml:mrow> </mml:msub> <mml:mo>≲</mml:mo> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">‖</mml:mo> <mml:mi>u</mml:mi> <mml:msub> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">‖</mml:mo> <mml:mrow> <mml:msup> <mml:mi>X</mml:mi> <mml:mrow> <mml:mi>s</mml:mi> <mml:mo>,</mml:mo> <mml:mi>b</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\begin{equation*} \\\\|u\\\\|_{L_t^qL_x^r}\\\\lesssim \\\\|u\\\\|_{X^{s,b}}, \\\\end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> where <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-vertical-bar u double-vertical-bar Subscript upper X Sub Superscript s comma b Baseline colon-equal double-vertical-bar ModifyingAbove u With caret left-parenthesis tau comma xi right-parenthesis mathematical left-angle xi mathematical right-angle Superscript s Baseline mathematical left-angle tau plus StartAbsoluteValue xi EndAbsoluteValue squared mathematical right-angle Superscript b Baseline double-vertical-bar Subscript upper L Sub Subscript tau comma xi Sub Superscript 2\\\"> <mml:semantics> <mml:mrow> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">‖</mml:mo> <mml:mi>u</mml:mi> <mml:msub> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">‖</mml:mo> <mml:mrow> <mml:msup> <mml:mi>X</mml:mi> <mml:mrow> <mml:mi>s</mml:mi> <mml:mo>,</mml:mo> <mml:mi>b</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> </mml:msub> <mml:mo>≔</mml:mo> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">‖</mml:mo> <mml:mrow> <mml:mover> <mml:mi>u</mml:mi> <mml:mo stretchy=\\\"false\\\">^</mml:mo> </mml:mover> </mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>τ</mml:mi> <mml:mo>,</mml:mo> <mml:mi>ξ</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟨</mml:mo> <mml:mi>ξ</mml:mi> <mml:msup> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟩</mml:mo> <mml:mi>s</mml:mi> </mml:msup> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟨</mml:mo> <mml:mi>τ</mml:mi> <mml:mo>+</mml:mo> <mml:mrow> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:mi>ξ</mml:mi> <mml:msup> <mml:mrow> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:msup> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟩</mml:mo> <mml:mi>b</mml:mi> </mml:msup> <mml:msub> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">‖</mml:mo> <mml:mrow> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mrow> <mml:mi>τ</mml:mi> <mml:mo>,</mml:mo> <mml:mi>ξ</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msubsup> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\|u\\\\|_{X^{s,b}}≔\\\\|\\\\hat {u}(\\\\tau ,\\\\xi )\\\\langle \\\\xi \\\\rangle ^s\\\\langle \\\\tau +|\\\\xi |^2\\\\rangle ^b \\\\|_{L_{\\\\tau ,\\\\xi }^2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. These estimates are also referred to as Strichartz estimates related to Schrödinger equation. We also give a new proof of the maximal function estimates for solutions to Schrödinger and Airy equations.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们展示了不等式 ‖ u ‖ L t q L x r ≲ ‖ u ‖ X s , b 的必要条件和充分条件。|u\|_{L_t^qL_x^r}\lesssim |u\|_{X^{s,b}}, end{equation*} 其中 ‖ u ‖ X s , b ≔ ‖ u ^ ( τ , ξ ) ξ ⟨ s τ + | ξ | 2 ⟩ b ‖ L τ 、ξ 2 \||u_{X^{s,b}}≔\||hat{u}(\tau ,\xi)(矩形 \xi )(矩形 \tau + |\xi |^2\rangle ^b \|{L_{tau,\xi}^2}。这些估计也被称为与薛定谔方程有关的斯特里查兹估计。我们还给出了薛定谔方程和艾里方程解的最大函数估计的新证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Strichartz type estimates for solutions to the Schrödinger equation

In this article, we show the necessary and sufficient conditions for the inequality u L t q L x r u X s , b , \begin{equation*} \|u\|_{L_t^qL_x^r}\lesssim \|u\|_{X^{s,b}}, \end{equation*} where u X s , b u ^ ( τ , ξ ) ξ s τ + | ξ | 2 b L τ , ξ 2 \|u\|_{X^{s,b}}≔\|\hat {u}(\tau ,\xi )\langle \xi \rangle ^s\langle \tau +|\xi |^2\rangle ^b \|_{L_{\tau ,\xi }^2} . These estimates are also referred to as Strichartz estimates related to Schrödinger equation. We also give a new proof of the maximal function estimates for solutions to Schrödinger and Airy equations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信