层间间距对 SnS2/ 石墨烯/SnS2 夹层异质结构的电子和光学特性的影响:密度泛函理论研究

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
David O. Idisi, Evans M. Benecha, Bonex Mwakikunga, Joseph K. O. Asante
{"title":"层间间距对 SnS2/ 石墨烯/SnS2 夹层异质结构的电子和光学特性的影响:密度泛函理论研究","authors":"David O. Idisi,&nbsp;Evans M. Benecha,&nbsp;Bonex Mwakikunga,&nbsp;Joseph K. O. Asante","doi":"10.1007/s10825-024-02202-4","DOIUrl":null,"url":null,"abstract":"<div><p>The formation of metal dichalcogenide heterostructures enables tailoring their properties for future optoelectronics and energy storage. The current paper focuses on the study of the effect of interlayer spacing on the electronic and optical properties of SnS<sub>2</sub>/graphene/SnS<sub>2</sub> sandwich heterostructure, using density functional theory electronic structure calculations. We find low cohesive energies/ per atom (<span>\\(0.0506 \\to 0.0514\\)</span> eV) for all the various interlayer spacing configurations (1–5 Å) considered in this study, implying the feasibility of experimental realization. The Mulliken charge transfer analysis suggests negative to positive net charge (<span>\\(-0.12 \\to 0.18\\)</span>) transfer for 1–3 Å threshold interlayer spacing, which implies acceptor and donor charge transfer configurations. The density of states of SnS<sub>2</sub>/graphene/SnS<sub>2</sub> retains unoccupied states for all the interlayer spacing configurations, which can be attributed to localized exciton states and strong electronic coupling between the electrons within the heterostructure layers. We further find a strong optical response and localized electronic transport, which can pave the way for optoelectronic applications of this material heterostructure.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"23 5","pages":"1029 - 1038"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10825-024-02202-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Effect of interlayer spacing on the electronic and optical properties of SnS2/graphene/SnS2 sandwich heterostructure: a density functional theory study\",\"authors\":\"David O. Idisi,&nbsp;Evans M. Benecha,&nbsp;Bonex Mwakikunga,&nbsp;Joseph K. O. Asante\",\"doi\":\"10.1007/s10825-024-02202-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The formation of metal dichalcogenide heterostructures enables tailoring their properties for future optoelectronics and energy storage. The current paper focuses on the study of the effect of interlayer spacing on the electronic and optical properties of SnS<sub>2</sub>/graphene/SnS<sub>2</sub> sandwich heterostructure, using density functional theory electronic structure calculations. We find low cohesive energies/ per atom (<span>\\\\(0.0506 \\\\to 0.0514\\\\)</span> eV) for all the various interlayer spacing configurations (1–5 Å) considered in this study, implying the feasibility of experimental realization. The Mulliken charge transfer analysis suggests negative to positive net charge (<span>\\\\(-0.12 \\\\to 0.18\\\\)</span>) transfer for 1–3 Å threshold interlayer spacing, which implies acceptor and donor charge transfer configurations. The density of states of SnS<sub>2</sub>/graphene/SnS<sub>2</sub> retains unoccupied states for all the interlayer spacing configurations, which can be attributed to localized exciton states and strong electronic coupling between the electrons within the heterostructure layers. We further find a strong optical response and localized electronic transport, which can pave the way for optoelectronic applications of this material heterostructure.</p></div>\",\"PeriodicalId\":620,\"journal\":{\"name\":\"Journal of Computational Electronics\",\"volume\":\"23 5\",\"pages\":\"1029 - 1038\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10825-024-02202-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10825-024-02202-4\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-024-02202-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

金属二掺杂异质结构的形成可为未来的光电子学和能量存储提供量身定制的特性。本文利用密度泛函理论电子结构计算,重点研究了层间间距对 SnS2/ 石墨烯/SnS2 夹层异质结构的电子和光学特性的影响。我们发现本研究中考虑的各种层间间隔配置(1-5 Å)的每个原子的内聚能(0.0506 \to 0.0514 \)都很低,这意味着实验实现的可行性。Mulliken 电荷转移分析表明,在 1-3 Å 的阈值层间距下,净电荷由负转正(-0.12 到 0.18),这意味着受体和供体电荷转移配置。在所有层间距配置下,SnS2/石墨烯/SnS2 的状态密度都保留了未占据状态,这可归因于异质结构层内的局部激子状态和电子之间的强电子耦合。我们进一步发现,这种材料具有很强的光学响应和局域电子传输能力,这为这种材料异质结构的光电应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of interlayer spacing on the electronic and optical properties of SnS2/graphene/SnS2 sandwich heterostructure: a density functional theory study

Effect of interlayer spacing on the electronic and optical properties of SnS2/graphene/SnS2 sandwich heterostructure: a density functional theory study

The formation of metal dichalcogenide heterostructures enables tailoring their properties for future optoelectronics and energy storage. The current paper focuses on the study of the effect of interlayer spacing on the electronic and optical properties of SnS2/graphene/SnS2 sandwich heterostructure, using density functional theory electronic structure calculations. We find low cohesive energies/ per atom (\(0.0506 \to 0.0514\) eV) for all the various interlayer spacing configurations (1–5 Å) considered in this study, implying the feasibility of experimental realization. The Mulliken charge transfer analysis suggests negative to positive net charge (\(-0.12 \to 0.18\)) transfer for 1–3 Å threshold interlayer spacing, which implies acceptor and donor charge transfer configurations. The density of states of SnS2/graphene/SnS2 retains unoccupied states for all the interlayer spacing configurations, which can be attributed to localized exciton states and strong electronic coupling between the electrons within the heterostructure layers. We further find a strong optical response and localized electronic transport, which can pave the way for optoelectronic applications of this material heterostructure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Electronics
Journal of Computational Electronics ENGINEERING, ELECTRICAL & ELECTRONIC-PHYSICS, APPLIED
CiteScore
4.50
自引率
4.80%
发文量
142
审稿时长
>12 weeks
期刊介绍: he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered. In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信