在量子计算机上演示圈地算法

IF 2.6 3区 物理与天体物理 Q2 PHYSICS, NUCLEAR
Zhengrong Qian, Jacob Watkins, Gabriel Given, Joey Bonitati, Kenneth Choi, Dean Lee
{"title":"在量子计算机上演示圈地算法","authors":"Zhengrong Qian,&nbsp;Jacob Watkins,&nbsp;Gabriel Given,&nbsp;Joey Bonitati,&nbsp;Kenneth Choi,&nbsp;Dean Lee","doi":"10.1140/epja/s10050-024-01373-9","DOIUrl":null,"url":null,"abstract":"<div><p>The rodeo algorithm is an efficient algorithm for eigenstate preparation and eigenvalue estimation for any observable on a quantum computer. This makes it a promising tool for studying the spectrum and structure of atomic nuclei as well as other fields of quantum many-body physics. The only requirement is that the initial state has sufficient overlap probability with the desired eigenstate. While it is exponentially faster than well-known algorithms such as phase estimation and adiabatic evolution for eigenstate preparation, it has yet to be implemented on an actual quantum device. In this work, we apply the rodeo algorithm to determine the energy levels of a random one-qubit Hamiltonian, resulting in a relative error of <span>\\(0.08\\%\\)</span> using mid-circuit measurements on the IBM Q device Casablanca. This surpasses the accuracy of directly-prepared eigenvector expectation values using the same quantum device. We take advantage of the high-accuracy energy determination and use the Hellmann–Feynman theorem to compute eigenvector expectation values for a different random one-qubit observable. For the Hellmann–Feynman calculations, we find a relative error of <span>\\(0.7\\%\\)</span>. We conclude by discussing possible future applications of the rodeo algorithm for multi-qubit Hamiltonians.</p></div>","PeriodicalId":786,"journal":{"name":"The European Physical Journal A","volume":"60 7","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Demonstration of the rodeo algorithm on a quantum computer\",\"authors\":\"Zhengrong Qian,&nbsp;Jacob Watkins,&nbsp;Gabriel Given,&nbsp;Joey Bonitati,&nbsp;Kenneth Choi,&nbsp;Dean Lee\",\"doi\":\"10.1140/epja/s10050-024-01373-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The rodeo algorithm is an efficient algorithm for eigenstate preparation and eigenvalue estimation for any observable on a quantum computer. This makes it a promising tool for studying the spectrum and structure of atomic nuclei as well as other fields of quantum many-body physics. The only requirement is that the initial state has sufficient overlap probability with the desired eigenstate. While it is exponentially faster than well-known algorithms such as phase estimation and adiabatic evolution for eigenstate preparation, it has yet to be implemented on an actual quantum device. In this work, we apply the rodeo algorithm to determine the energy levels of a random one-qubit Hamiltonian, resulting in a relative error of <span>\\\\(0.08\\\\%\\\\)</span> using mid-circuit measurements on the IBM Q device Casablanca. This surpasses the accuracy of directly-prepared eigenvector expectation values using the same quantum device. We take advantage of the high-accuracy energy determination and use the Hellmann–Feynman theorem to compute eigenvector expectation values for a different random one-qubit observable. For the Hellmann–Feynman calculations, we find a relative error of <span>\\\\(0.7\\\\%\\\\)</span>. We conclude by discussing possible future applications of the rodeo algorithm for multi-qubit Hamiltonians.</p></div>\",\"PeriodicalId\":786,\"journal\":{\"name\":\"The European Physical Journal A\",\"volume\":\"60 7\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal A\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epja/s10050-024-01373-9\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epja/s10050-024-01373-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

圈地算法是一种在量子计算机上对任何观测对象进行特征状态准备和特征值估计的高效算法。这使它成为研究原子核的频谱和结构以及其他量子多体物理学领域的一个很有前途的工具。唯一的要求是初始状态与所需特征状态有足够的重叠概率。虽然在特征态制备方面,它比相位估计和绝热演化等著名算法快了数倍,但它尚未在实际量子设备上实现。在这项工作中,我们应用圈地算法来确定随机单量子位哈密顿的能级,结果是在IBM Q器件卡萨布兰卡(Casablanca)上使用中电路测量的相对误差为(0.08%\)。这超过了使用相同量子设备直接制备特征向量期望值的精度。我们利用高精度能量测定的优势,使用赫尔曼-费曼定理来计算不同随机单量子比特观测值的特征向量期望值。对于赫尔曼-费曼计算,我们发现相对误差为\(0.7\%\)。最后,我们讨论了圈地算法未来可能在多量子位哈密顿中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Demonstration of the rodeo algorithm on a quantum computer

Demonstration of the rodeo algorithm on a quantum computer

The rodeo algorithm is an efficient algorithm for eigenstate preparation and eigenvalue estimation for any observable on a quantum computer. This makes it a promising tool for studying the spectrum and structure of atomic nuclei as well as other fields of quantum many-body physics. The only requirement is that the initial state has sufficient overlap probability with the desired eigenstate. While it is exponentially faster than well-known algorithms such as phase estimation and adiabatic evolution for eigenstate preparation, it has yet to be implemented on an actual quantum device. In this work, we apply the rodeo algorithm to determine the energy levels of a random one-qubit Hamiltonian, resulting in a relative error of \(0.08\%\) using mid-circuit measurements on the IBM Q device Casablanca. This surpasses the accuracy of directly-prepared eigenvector expectation values using the same quantum device. We take advantage of the high-accuracy energy determination and use the Hellmann–Feynman theorem to compute eigenvector expectation values for a different random one-qubit observable. For the Hellmann–Feynman calculations, we find a relative error of \(0.7\%\). We conclude by discussing possible future applications of the rodeo algorithm for multi-qubit Hamiltonians.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal A
The European Physical Journal A 物理-物理:核物理
CiteScore
5.00
自引率
18.50%
发文量
216
审稿时长
3-8 weeks
期刊介绍: Hadron Physics Hadron Structure Hadron Spectroscopy Hadronic and Electroweak Interactions of Hadrons Nonperturbative Approaches to QCD Phenomenological Approaches to Hadron Physics Nuclear and Quark Matter Heavy-Ion Collisions Phase Diagram of the Strong Interaction Hard Probes Quark-Gluon Plasma and Hadronic Matter Relativistic Transport and Hydrodynamics Compact Stars Nuclear Physics Nuclear Structure and Reactions Few-Body Systems Radioactive Beams Electroweak Interactions Nuclear Astrophysics Article Categories Letters (Open Access) Regular Articles New Tools and Techniques Reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信