Zhengrong Qian, Jacob Watkins, Gabriel Given, Joey Bonitati, Kenneth Choi, Dean Lee
{"title":"在量子计算机上演示圈地算法","authors":"Zhengrong Qian, Jacob Watkins, Gabriel Given, Joey Bonitati, Kenneth Choi, Dean Lee","doi":"10.1140/epja/s10050-024-01373-9","DOIUrl":null,"url":null,"abstract":"<div><p>The rodeo algorithm is an efficient algorithm for eigenstate preparation and eigenvalue estimation for any observable on a quantum computer. This makes it a promising tool for studying the spectrum and structure of atomic nuclei as well as other fields of quantum many-body physics. The only requirement is that the initial state has sufficient overlap probability with the desired eigenstate. While it is exponentially faster than well-known algorithms such as phase estimation and adiabatic evolution for eigenstate preparation, it has yet to be implemented on an actual quantum device. In this work, we apply the rodeo algorithm to determine the energy levels of a random one-qubit Hamiltonian, resulting in a relative error of <span>\\(0.08\\%\\)</span> using mid-circuit measurements on the IBM Q device Casablanca. This surpasses the accuracy of directly-prepared eigenvector expectation values using the same quantum device. We take advantage of the high-accuracy energy determination and use the Hellmann–Feynman theorem to compute eigenvector expectation values for a different random one-qubit observable. For the Hellmann–Feynman calculations, we find a relative error of <span>\\(0.7\\%\\)</span>. We conclude by discussing possible future applications of the rodeo algorithm for multi-qubit Hamiltonians.</p></div>","PeriodicalId":786,"journal":{"name":"The European Physical Journal A","volume":"60 7","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Demonstration of the rodeo algorithm on a quantum computer\",\"authors\":\"Zhengrong Qian, Jacob Watkins, Gabriel Given, Joey Bonitati, Kenneth Choi, Dean Lee\",\"doi\":\"10.1140/epja/s10050-024-01373-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The rodeo algorithm is an efficient algorithm for eigenstate preparation and eigenvalue estimation for any observable on a quantum computer. This makes it a promising tool for studying the spectrum and structure of atomic nuclei as well as other fields of quantum many-body physics. The only requirement is that the initial state has sufficient overlap probability with the desired eigenstate. While it is exponentially faster than well-known algorithms such as phase estimation and adiabatic evolution for eigenstate preparation, it has yet to be implemented on an actual quantum device. In this work, we apply the rodeo algorithm to determine the energy levels of a random one-qubit Hamiltonian, resulting in a relative error of <span>\\\\(0.08\\\\%\\\\)</span> using mid-circuit measurements on the IBM Q device Casablanca. This surpasses the accuracy of directly-prepared eigenvector expectation values using the same quantum device. We take advantage of the high-accuracy energy determination and use the Hellmann–Feynman theorem to compute eigenvector expectation values for a different random one-qubit observable. For the Hellmann–Feynman calculations, we find a relative error of <span>\\\\(0.7\\\\%\\\\)</span>. We conclude by discussing possible future applications of the rodeo algorithm for multi-qubit Hamiltonians.</p></div>\",\"PeriodicalId\":786,\"journal\":{\"name\":\"The European Physical Journal A\",\"volume\":\"60 7\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal A\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epja/s10050-024-01373-9\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epja/s10050-024-01373-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
Demonstration of the rodeo algorithm on a quantum computer
The rodeo algorithm is an efficient algorithm for eigenstate preparation and eigenvalue estimation for any observable on a quantum computer. This makes it a promising tool for studying the spectrum and structure of atomic nuclei as well as other fields of quantum many-body physics. The only requirement is that the initial state has sufficient overlap probability with the desired eigenstate. While it is exponentially faster than well-known algorithms such as phase estimation and adiabatic evolution for eigenstate preparation, it has yet to be implemented on an actual quantum device. In this work, we apply the rodeo algorithm to determine the energy levels of a random one-qubit Hamiltonian, resulting in a relative error of \(0.08\%\) using mid-circuit measurements on the IBM Q device Casablanca. This surpasses the accuracy of directly-prepared eigenvector expectation values using the same quantum device. We take advantage of the high-accuracy energy determination and use the Hellmann–Feynman theorem to compute eigenvector expectation values for a different random one-qubit observable. For the Hellmann–Feynman calculations, we find a relative error of \(0.7\%\). We conclude by discussing possible future applications of the rodeo algorithm for multi-qubit Hamiltonians.
期刊介绍:
Hadron Physics
Hadron Structure
Hadron Spectroscopy
Hadronic and Electroweak Interactions of Hadrons
Nonperturbative Approaches to QCD
Phenomenological Approaches to Hadron Physics
Nuclear and Quark Matter
Heavy-Ion Collisions
Phase Diagram of the Strong Interaction
Hard Probes
Quark-Gluon Plasma and Hadronic Matter
Relativistic Transport and Hydrodynamics
Compact Stars
Nuclear Physics
Nuclear Structure and Reactions
Few-Body Systems
Radioactive Beams
Electroweak Interactions
Nuclear Astrophysics
Article Categories
Letters (Open Access)
Regular Articles
New Tools and Techniques
Reviews.