Yufeng Zhao, Yi Shen, Teodor Veres and Robert E. Campbell
{"title":"提高哺乳动物细胞中基因编码 Ca2+ 生物传感器响应性的自动筛选平台","authors":"Yufeng Zhao, Yi Shen, Teodor Veres and Robert E. Campbell","doi":"10.1039/D4SD00138A","DOIUrl":null,"url":null,"abstract":"<p >Genetically-encoded, fluorescent protein (FP)-based biosensors are powerful tools for imaging dynamic cellular activities. Directed evolution is a highly effective method for developing enhanced versions of FP-based biosensors, but the screening process is laborious and time-consuming. Mammalian cell-based screening with electrical stimulation methods has been successful in accurately selecting variants of biosensors for imaging neuronal activities. We introduce an automated mammalian cell screening platform utilizing a fluorescence microscope and a liquid dispenser to enable the screening of biosensor responsiveness to chemical stimulation. We demonstrated the effectiveness of this platform in improving the response of a red fluorescent biosensor for Ca<small><sup>2+</sup></small>, K-GECO, for detection of histamine-induced changes in Ca<small><sup>2+</sup></small> concentration. This method should be applicable to any FP-based biosensor that responds to pharmacological treatment or other exogenous chemical stimulation, simplifying efforts to develop biosensors tailored for specific applications in diverse biological contexts.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00138a?page=search","citationCount":"0","resultStr":"{\"title\":\"An automated screening platform for improving the responsiveness of genetically encoded Ca2+ biosensors in mammalian cells†\",\"authors\":\"Yufeng Zhao, Yi Shen, Teodor Veres and Robert E. Campbell\",\"doi\":\"10.1039/D4SD00138A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Genetically-encoded, fluorescent protein (FP)-based biosensors are powerful tools for imaging dynamic cellular activities. Directed evolution is a highly effective method for developing enhanced versions of FP-based biosensors, but the screening process is laborious and time-consuming. Mammalian cell-based screening with electrical stimulation methods has been successful in accurately selecting variants of biosensors for imaging neuronal activities. We introduce an automated mammalian cell screening platform utilizing a fluorescence microscope and a liquid dispenser to enable the screening of biosensor responsiveness to chemical stimulation. We demonstrated the effectiveness of this platform in improving the response of a red fluorescent biosensor for Ca<small><sup>2+</sup></small>, K-GECO, for detection of histamine-induced changes in Ca<small><sup>2+</sup></small> concentration. This method should be applicable to any FP-based biosensor that responds to pharmacological treatment or other exogenous chemical stimulation, simplifying efforts to develop biosensors tailored for specific applications in diverse biological contexts.</p>\",\"PeriodicalId\":74786,\"journal\":{\"name\":\"Sensors & diagnostics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00138a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors & diagnostics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/sd/d4sd00138a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors & diagnostics","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/sd/d4sd00138a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
An automated screening platform for improving the responsiveness of genetically encoded Ca2+ biosensors in mammalian cells†
Genetically-encoded, fluorescent protein (FP)-based biosensors are powerful tools for imaging dynamic cellular activities. Directed evolution is a highly effective method for developing enhanced versions of FP-based biosensors, but the screening process is laborious and time-consuming. Mammalian cell-based screening with electrical stimulation methods has been successful in accurately selecting variants of biosensors for imaging neuronal activities. We introduce an automated mammalian cell screening platform utilizing a fluorescence microscope and a liquid dispenser to enable the screening of biosensor responsiveness to chemical stimulation. We demonstrated the effectiveness of this platform in improving the response of a red fluorescent biosensor for Ca2+, K-GECO, for detection of histamine-induced changes in Ca2+ concentration. This method should be applicable to any FP-based biosensor that responds to pharmacological treatment or other exogenous chemical stimulation, simplifying efforts to develop biosensors tailored for specific applications in diverse biological contexts.