利用超宽带热反射光谱寻求非傅里叶传热

IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ahmad Zenji, Gilles Pernot, David Lacroix, Jean-Michel Rampnoux, Olivier Bourgeois, Stéphane Grauby, Stefan Dilhaire
{"title":"利用超宽带热反射光谱寻求非傅里叶传热","authors":"Ahmad Zenji, Gilles Pernot, David Lacroix, Jean-Michel Rampnoux, Olivier Bourgeois, Stéphane Grauby, Stefan Dilhaire","doi":"10.1038/s43246-024-00572-7","DOIUrl":null,"url":null,"abstract":"Studying superdiffusive thermal transport is crucial for advanced thermal management in electronics and nanotechnology, ensuring devices run efficiently and reliably. Such study also contributes to the design of high-performance thermoelectric materials and devices, thereby improving energy efficiency. This work leads to a better understanding of fundamental physics and non-equilibrium phenomena, fostering innovations in numerous scientific and engineering fields. We are showing, from a one shot experiment, that clear deviations from classical Fourier behavior are observed in a semiconductor alloy such as InGaAs. These deviations are a signature of the competition that takes place between ballistic and diffusive heat transfers. Thermal propagation is modelled by a truncated Lévy model. This approach is used to analyze this ballistic-diffusive transition and to determine the thermal properties of InGaAs. The experimental part of this work is based on a combination of time-domain and frequency-domain thermoreflectance methods with an extended bandwidth ranging from a few kHz to 100 GHz. This unique wide-bandwidth configuration allows a clear distinction between Fourier diffusive and non-Fourier superdiffusive heat propagation in semiconductor materials. For diffusive processes, we also demonstrate our ability to simultaneously measure the thermal conductivity, heat capacity and interface thermal resistance of several materials over 3 decades of thermal conductivity. Thermal transport in semiconductor thin films deviates from conventional Brownian motion, exhibiting superdiffusive behaviour. Here, pump-probe thermoreflectance measurements on InGaAs enable the investigation of heat propagation over an extended bandwidth ranging from a few kHz to 100 GHz.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00572-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Seeking non-Fourier heat transfer with ultrabroad band thermoreflectance spectroscopy\",\"authors\":\"Ahmad Zenji, Gilles Pernot, David Lacroix, Jean-Michel Rampnoux, Olivier Bourgeois, Stéphane Grauby, Stefan Dilhaire\",\"doi\":\"10.1038/s43246-024-00572-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Studying superdiffusive thermal transport is crucial for advanced thermal management in electronics and nanotechnology, ensuring devices run efficiently and reliably. Such study also contributes to the design of high-performance thermoelectric materials and devices, thereby improving energy efficiency. This work leads to a better understanding of fundamental physics and non-equilibrium phenomena, fostering innovations in numerous scientific and engineering fields. We are showing, from a one shot experiment, that clear deviations from classical Fourier behavior are observed in a semiconductor alloy such as InGaAs. These deviations are a signature of the competition that takes place between ballistic and diffusive heat transfers. Thermal propagation is modelled by a truncated Lévy model. This approach is used to analyze this ballistic-diffusive transition and to determine the thermal properties of InGaAs. The experimental part of this work is based on a combination of time-domain and frequency-domain thermoreflectance methods with an extended bandwidth ranging from a few kHz to 100 GHz. This unique wide-bandwidth configuration allows a clear distinction between Fourier diffusive and non-Fourier superdiffusive heat propagation in semiconductor materials. For diffusive processes, we also demonstrate our ability to simultaneously measure the thermal conductivity, heat capacity and interface thermal resistance of several materials over 3 decades of thermal conductivity. Thermal transport in semiconductor thin films deviates from conventional Brownian motion, exhibiting superdiffusive behaviour. Here, pump-probe thermoreflectance measurements on InGaAs enable the investigation of heat propagation over an extended bandwidth ranging from a few kHz to 100 GHz.\",\"PeriodicalId\":10589,\"journal\":{\"name\":\"Communications Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43246-024-00572-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43246-024-00572-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00572-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究超扩散热传输对于电子和纳米技术中的先进热管理至关重要,可确保设备高效可靠地运行。这种研究还有助于设计高性能热电材料和器件,从而提高能源效率。这项工作有助于更好地理解基础物理学和非平衡现象,促进众多科学和工程领域的创新。我们通过一次实验表明,在 InGaAs 等半导体合金中观察到明显偏离经典傅立叶行为的现象。这些偏差是弹道传热和扩散传热之间竞争的标志。热传播是通过截断的莱维模型来模拟的。这种方法用于分析这种弹道-扩散转换,并确定 InGaAs 的热特性。这项工作的实验部分基于时域和频域热反射方法的结合,扩展带宽范围从几千赫兹到 100 千兆赫。这种独特的宽带宽配置可以明确区分半导体材料中的傅里叶扩散热传播和非傅里叶超扩散热传播。对于扩散过程,我们还展示了同时测量几种材料超过 30 年热导率的热导率、热容量和界面热阻的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Seeking non-Fourier heat transfer with ultrabroad band thermoreflectance spectroscopy

Seeking non-Fourier heat transfer with ultrabroad band thermoreflectance spectroscopy

Seeking non-Fourier heat transfer with ultrabroad band thermoreflectance spectroscopy
Studying superdiffusive thermal transport is crucial for advanced thermal management in electronics and nanotechnology, ensuring devices run efficiently and reliably. Such study also contributes to the design of high-performance thermoelectric materials and devices, thereby improving energy efficiency. This work leads to a better understanding of fundamental physics and non-equilibrium phenomena, fostering innovations in numerous scientific and engineering fields. We are showing, from a one shot experiment, that clear deviations from classical Fourier behavior are observed in a semiconductor alloy such as InGaAs. These deviations are a signature of the competition that takes place between ballistic and diffusive heat transfers. Thermal propagation is modelled by a truncated Lévy model. This approach is used to analyze this ballistic-diffusive transition and to determine the thermal properties of InGaAs. The experimental part of this work is based on a combination of time-domain and frequency-domain thermoreflectance methods with an extended bandwidth ranging from a few kHz to 100 GHz. This unique wide-bandwidth configuration allows a clear distinction between Fourier diffusive and non-Fourier superdiffusive heat propagation in semiconductor materials. For diffusive processes, we also demonstrate our ability to simultaneously measure the thermal conductivity, heat capacity and interface thermal resistance of several materials over 3 decades of thermal conductivity. Thermal transport in semiconductor thin films deviates from conventional Brownian motion, exhibiting superdiffusive behaviour. Here, pump-probe thermoreflectance measurements on InGaAs enable the investigation of heat propagation over an extended bandwidth ranging from a few kHz to 100 GHz.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信