论证中道德基础的定量和定性分析

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Alina Landowska, Katarzyna Budzynska, He Zhang
{"title":"论证中道德基础的定量和定性分析","authors":"Alina Landowska,&nbsp;Katarzyna Budzynska,&nbsp;He Zhang","doi":"10.1007/s10503-024-09636-x","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces moral argument analytics, a technology that provides insights into the use of moral arguments in discourse. We analyse five socio-political corpora of argument annotated data from offline and online discussions, totalling 240k words with 9k arguments, with an average annotation accuracy of 78%. Using a lexicon-based method, we automatically annotate these arguments with moral foundations, achieving an estimated accuracy of 83%. Quantitative analysis allows us to observe statistical patterns and trends in the use of moral arguments, whereas qualitative analysis enables us to understand and explain the communication strategies in the use of moral arguments in different settings. For instance, supporting arguments often rely on <i>Loyalty</i> and <i>Authority</i>, while attacking arguments use <i>Care</i>. We find that online discussions exhibit a greater diversity of moral foundations and a higher negative valence of moral arguments. Online arguers often rely more on <i>Harm</i> rather than <i>Care</i>, <i>Degradation</i> rather than <i>Sanctity</i>. These insights have significant implications for AI applications, particularly in understanding and predicting human and machine moral behaviours. This work contributes to the construction of more convincing messages and the detection of harmful or biased AI-generated synthetic content.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10503-024-09636-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Quantitative and Qualitative Analysis of Moral Foundations in Argumentation\",\"authors\":\"Alina Landowska,&nbsp;Katarzyna Budzynska,&nbsp;He Zhang\",\"doi\":\"10.1007/s10503-024-09636-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper introduces moral argument analytics, a technology that provides insights into the use of moral arguments in discourse. We analyse five socio-political corpora of argument annotated data from offline and online discussions, totalling 240k words with 9k arguments, with an average annotation accuracy of 78%. Using a lexicon-based method, we automatically annotate these arguments with moral foundations, achieving an estimated accuracy of 83%. Quantitative analysis allows us to observe statistical patterns and trends in the use of moral arguments, whereas qualitative analysis enables us to understand and explain the communication strategies in the use of moral arguments in different settings. For instance, supporting arguments often rely on <i>Loyalty</i> and <i>Authority</i>, while attacking arguments use <i>Care</i>. We find that online discussions exhibit a greater diversity of moral foundations and a higher negative valence of moral arguments. Online arguers often rely more on <i>Harm</i> rather than <i>Care</i>, <i>Degradation</i> rather than <i>Sanctity</i>. These insights have significant implications for AI applications, particularly in understanding and predicting human and machine moral behaviours. This work contributes to the construction of more convincing messages and the detection of harmful or biased AI-generated synthetic content.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10503-024-09636-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10503-024-09636-x\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"98","ListUrlMain":"https://link.springer.com/article/10.1007/s10503-024-09636-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了道德论点分析技术,该技术可帮助人们深入了解道德论点在话语中的使用情况。我们分析了五个社会政治语料库的论点注释数据,这些数据来自线下和线上讨论,共计 240k 词,9k 个论点,平均注释准确率为 78%。我们使用基于词典的方法,自动为这些论点注释道德基础,估计准确率达到 83%。定量分析使我们能够观察道德论据使用的统计模式和趋势,而定性分析则使我们能够理解和解释不同环境下道德论据使用的交流策略。例如,支持性论点通常依赖于 "忠诚 "和 "权威",而攻击性论点则使用 "关怀"。我们发现,在线讨论中的道德基础更加多样化,道德论据的负面价值也更高。在线争论者通常更依赖于伤害而非关爱,退化而非神圣。这些见解对人工智能的应用具有重要意义,尤其是在理解和预测人类与机器的道德行为方面。这项工作有助于构建更有说服力的信息,并检测人工智能生成的有害或有偏见的合成内容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Quantitative and Qualitative Analysis of Moral Foundations in Argumentation

Quantitative and Qualitative Analysis of Moral Foundations in Argumentation

This paper introduces moral argument analytics, a technology that provides insights into the use of moral arguments in discourse. We analyse five socio-political corpora of argument annotated data from offline and online discussions, totalling 240k words with 9k arguments, with an average annotation accuracy of 78%. Using a lexicon-based method, we automatically annotate these arguments with moral foundations, achieving an estimated accuracy of 83%. Quantitative analysis allows us to observe statistical patterns and trends in the use of moral arguments, whereas qualitative analysis enables us to understand and explain the communication strategies in the use of moral arguments in different settings. For instance, supporting arguments often rely on Loyalty and Authority, while attacking arguments use Care. We find that online discussions exhibit a greater diversity of moral foundations and a higher negative valence of moral arguments. Online arguers often rely more on Harm rather than Care, Degradation rather than Sanctity. These insights have significant implications for AI applications, particularly in understanding and predicting human and machine moral behaviours. This work contributes to the construction of more convincing messages and the detection of harmful or biased AI-generated synthetic content.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信