Alonzo González-González, Oscar Sánchez-Sánchez, Baojie Wan, Scott Franzblau, Isidro Palos, José C. Espinoza-Hicks, Adriana Moreno-Rodríguez, Ana Verónica Martínez-Vázquez, Edgar E. Lara-Ramírez, Eyra Ortiz-Pérez, Alma D. Paz-González and Gildardo Rivera
{"title":"拓展喹喔啉-7-羧酸酯 1,4- 二-N-氧化物衍生物作为潜在抗结核药物的化学空间","authors":"Alonzo González-González, Oscar Sánchez-Sánchez, Baojie Wan, Scott Franzblau, Isidro Palos, José C. Espinoza-Hicks, Adriana Moreno-Rodríguez, Ana Verónica Martínez-Vázquez, Edgar E. Lara-Ramírez, Eyra Ortiz-Pérez, Alma D. Paz-González and Gildardo Rivera","doi":"10.1039/D4MD00221K","DOIUrl":null,"url":null,"abstract":"<p >Tuberculosis is a worldwide health problem that warrants attention given that the current treatment options require a long-term chemotherapeutic period and have reported the development of <em>Mycobacterium tuberculosis</em> (<em>M. tuberculosis</em>) multidrug resistant strains. In this study, <em>n</em>-butyl and isobutyl quinoxaline-7-carboxylate 1,4-di-<em>N</em>-oxide were evaluated against replicating and non-replicating H37Rv <em>M. tuberculosis</em> strains. The results showed that seventeen of the twenty-eight derivatives have minimum inhibitory concentration (MIC) values lower than isoniazid (2.92 μM). The most active antimycobacterial agents were <strong><strong>T-148</strong></strong>, <strong><strong>T-149</strong></strong>, <strong><strong>T-163</strong></strong>, and <strong><strong>T-164</strong></strong>, which have the lowest MIC values (0.53, 0.57, 0.53, and 0.55 μM respectively). These results confirm the potential of quinoxaline-1,4-di-<em>N</em>-oxide against <em>M. tuberculosis</em> to develop and obtain new and more safety antituberculosis drugs.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 8","pages":" 2785-2791"},"PeriodicalIF":3.5970,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expanding the chemical space of ester of quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives as potential antitubercular agents†\",\"authors\":\"Alonzo González-González, Oscar Sánchez-Sánchez, Baojie Wan, Scott Franzblau, Isidro Palos, José C. Espinoza-Hicks, Adriana Moreno-Rodríguez, Ana Verónica Martínez-Vázquez, Edgar E. Lara-Ramírez, Eyra Ortiz-Pérez, Alma D. Paz-González and Gildardo Rivera\",\"doi\":\"10.1039/D4MD00221K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Tuberculosis is a worldwide health problem that warrants attention given that the current treatment options require a long-term chemotherapeutic period and have reported the development of <em>Mycobacterium tuberculosis</em> (<em>M. tuberculosis</em>) multidrug resistant strains. In this study, <em>n</em>-butyl and isobutyl quinoxaline-7-carboxylate 1,4-di-<em>N</em>-oxide were evaluated against replicating and non-replicating H37Rv <em>M. tuberculosis</em> strains. The results showed that seventeen of the twenty-eight derivatives have minimum inhibitory concentration (MIC) values lower than isoniazid (2.92 μM). The most active antimycobacterial agents were <strong><strong>T-148</strong></strong>, <strong><strong>T-149</strong></strong>, <strong><strong>T-163</strong></strong>, and <strong><strong>T-164</strong></strong>, which have the lowest MIC values (0.53, 0.57, 0.53, and 0.55 μM respectively). These results confirm the potential of quinoxaline-1,4-di-<em>N</em>-oxide against <em>M. tuberculosis</em> to develop and obtain new and more safety antituberculosis drugs.</p>\",\"PeriodicalId\":88,\"journal\":{\"name\":\"MedChemComm\",\"volume\":\" 8\",\"pages\":\" 2785-2791\"},\"PeriodicalIF\":3.5970,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MedChemComm\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/md/d4md00221k\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedChemComm","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/md/d4md00221k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Expanding the chemical space of ester of quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives as potential antitubercular agents†
Tuberculosis is a worldwide health problem that warrants attention given that the current treatment options require a long-term chemotherapeutic period and have reported the development of Mycobacterium tuberculosis (M. tuberculosis) multidrug resistant strains. In this study, n-butyl and isobutyl quinoxaline-7-carboxylate 1,4-di-N-oxide were evaluated against replicating and non-replicating H37Rv M. tuberculosis strains. The results showed that seventeen of the twenty-eight derivatives have minimum inhibitory concentration (MIC) values lower than isoniazid (2.92 μM). The most active antimycobacterial agents were T-148, T-149, T-163, and T-164, which have the lowest MIC values (0.53, 0.57, 0.53, and 0.55 μM respectively). These results confirm the potential of quinoxaline-1,4-di-N-oxide against M. tuberculosis to develop and obtain new and more safety antituberculosis drugs.
期刊介绍:
Research and review articles in medicinal chemistry and related drug discovery science; the official journal of the European Federation for Medicinal Chemistry.
In 2020, MedChemComm will change its name to RSC Medicinal Chemistry. Issue 12, 2019 will be the last issue as MedChemComm.