通过 s-自旋相干态的叠加实现量子计量性能和精确的海森堡极限精度

IF 1.5 4区 物理与天体物理 Q3 OPTICS
Hanan Saidi, Hanane El Hadfi, Abdallah Slaoui, Rachid Ahl Laamara
{"title":"通过 s-自旋相干态的叠加实现量子计量性能和精确的海森堡极限精度","authors":"Hanan Saidi,&nbsp;Hanane El Hadfi,&nbsp;Abdallah Slaoui,&nbsp;Rachid Ahl Laamara","doi":"10.1140/epjd/s10053-024-00894-8","DOIUrl":null,"url":null,"abstract":"<p>In quantum phase estimation, the Heisenberg limit provides the ultimate accuracy over quasi-classical estimation procedures. However, realizing this limit hinges upon both the detection strategy employed for output measurements and the characteristics of the input states. This study delves into quantum phase estimation using <i>s</i>-spin coherent states superposition. Initially, we delve into the explicit formulation of spin coherent states for a spin <span>\\(s=3/2\\)</span>. Both the quantum Fisher information and the quantum Cramer–Rao bound are meticulously examined. We analytically show that the ultimate measurement precision of spin cat states approaches the Heisenberg limit, where uncertainty decreases inversely with the total particle number. Moreover, we investigate the phase sensitivity introduced through operators <span>\\(e^{i\\zeta {S}_{z}}\\)</span>, <span>\\(e^{i\\zeta {S}_{x}}\\)</span> and <span>\\(e^{i\\zeta {S}_{y}}\\)</span>, subsequently comparing the resultants findings. In closing, we provide a general analytical expression for the quantum Cramér–Rao bound applied to these three parameter-generating operators, utilizing general <i>s</i>-spin coherent states. We remarked that attaining Heisenberg-limit precision requires the careful adjustment of insightful information about the geometry of <i>s</i>-spin cat states on the Bloch sphere. Additionally, as the number of <i>s</i>-spin increases, the Heisenberg limit decreases, and this reduction is inversely proportional to the <i>s</i>-spin number.\n</p>","PeriodicalId":789,"journal":{"name":"The European Physical Journal D","volume":"78 7","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Achieving quantum metrological performance and exact Heisenberg limit precision through superposition of s-spin coherent states\",\"authors\":\"Hanan Saidi,&nbsp;Hanane El Hadfi,&nbsp;Abdallah Slaoui,&nbsp;Rachid Ahl Laamara\",\"doi\":\"10.1140/epjd/s10053-024-00894-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In quantum phase estimation, the Heisenberg limit provides the ultimate accuracy over quasi-classical estimation procedures. However, realizing this limit hinges upon both the detection strategy employed for output measurements and the characteristics of the input states. This study delves into quantum phase estimation using <i>s</i>-spin coherent states superposition. Initially, we delve into the explicit formulation of spin coherent states for a spin <span>\\\\(s=3/2\\\\)</span>. Both the quantum Fisher information and the quantum Cramer–Rao bound are meticulously examined. We analytically show that the ultimate measurement precision of spin cat states approaches the Heisenberg limit, where uncertainty decreases inversely with the total particle number. Moreover, we investigate the phase sensitivity introduced through operators <span>\\\\(e^{i\\\\zeta {S}_{z}}\\\\)</span>, <span>\\\\(e^{i\\\\zeta {S}_{x}}\\\\)</span> and <span>\\\\(e^{i\\\\zeta {S}_{y}}\\\\)</span>, subsequently comparing the resultants findings. In closing, we provide a general analytical expression for the quantum Cramér–Rao bound applied to these three parameter-generating operators, utilizing general <i>s</i>-spin coherent states. We remarked that attaining Heisenberg-limit precision requires the careful adjustment of insightful information about the geometry of <i>s</i>-spin cat states on the Bloch sphere. Additionally, as the number of <i>s</i>-spin increases, the Heisenberg limit decreases, and this reduction is inversely proportional to the <i>s</i>-spin number.\\n</p>\",\"PeriodicalId\":789,\"journal\":{\"name\":\"The European Physical Journal D\",\"volume\":\"78 7\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal D\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjd/s10053-024-00894-8\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal D","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjd/s10053-024-00894-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在量子相位估算中,海森堡极限提供了超越准经典估算程序的终极精度。然而,实现这一极限取决于输出测量所采用的探测策略和输入状态的特性。本研究利用 s-自旋相干态叠加深入研究量子相位估计。首先,我们深入研究了自旋相干态的明确表述(s=3/2)。我们仔细研究了量子费雪信息和量子克拉默-拉奥约束。我们通过分析表明,自旋猫态的最终测量精度接近海森堡极限,其中不确定性与粒子总数成反比递减。此外,我们还研究了通过算子(e^{i\zeta {S}_{z}}\ )、(e^{i\zeta {S}_{x}}\ )和(e^{i\zeta {S}_{y}}\ )引入的相位敏感性,随后对结果进行了比较。最后,我们利用一般的 s-自旋相干态,提供了应用于这三个参数生成算子的量子克拉梅尔-拉奥约束的一般分析表达式。我们指出,要达到海森堡极限精度,需要仔细调整有关布洛赫球上 s-自旋猫态几何的有洞察力的信息。此外,随着 s-自旋数量的增加,海森堡极限也会降低,而这种降低与 s-自旋数量成反比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Achieving quantum metrological performance and exact Heisenberg limit precision through superposition of s-spin coherent states

Achieving quantum metrological performance and exact Heisenberg limit precision through superposition of s-spin coherent states

In quantum phase estimation, the Heisenberg limit provides the ultimate accuracy over quasi-classical estimation procedures. However, realizing this limit hinges upon both the detection strategy employed for output measurements and the characteristics of the input states. This study delves into quantum phase estimation using s-spin coherent states superposition. Initially, we delve into the explicit formulation of spin coherent states for a spin \(s=3/2\). Both the quantum Fisher information and the quantum Cramer–Rao bound are meticulously examined. We analytically show that the ultimate measurement precision of spin cat states approaches the Heisenberg limit, where uncertainty decreases inversely with the total particle number. Moreover, we investigate the phase sensitivity introduced through operators \(e^{i\zeta {S}_{z}}\), \(e^{i\zeta {S}_{x}}\) and \(e^{i\zeta {S}_{y}}\), subsequently comparing the resultants findings. In closing, we provide a general analytical expression for the quantum Cramér–Rao bound applied to these three parameter-generating operators, utilizing general s-spin coherent states. We remarked that attaining Heisenberg-limit precision requires the careful adjustment of insightful information about the geometry of s-spin cat states on the Bloch sphere. Additionally, as the number of s-spin increases, the Heisenberg limit decreases, and this reduction is inversely proportional to the s-spin number.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal D
The European Physical Journal D 物理-物理:原子、分子和化学物理
CiteScore
3.10
自引率
11.10%
发文量
213
审稿时长
3 months
期刊介绍: The European Physical Journal D (EPJ D) presents new and original research results in: Atomic Physics; Molecular Physics and Chemical Physics; Atomic and Molecular Collisions; Clusters and Nanostructures; Plasma Physics; Laser Cooling and Quantum Gas; Nonlinear Dynamics; Optical Physics; Quantum Optics and Quantum Information; Ultraintense and Ultrashort Laser Fields. The range of topics covered in these areas is extensive, from Molecular Interaction and Reactivity to Spectroscopy and Thermodynamics of Clusters, from Atomic Optics to Bose-Einstein Condensation to Femtochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信