巴特勒方法应用于 $$\mathbb {Z}_p[C_p\times C_p]$$ -Permutation 模块

Pub Date : 2024-07-22 DOI:10.1007/s10468-024-10277-7
John W. MacQuarrie, Marlon Estanislau
{"title":"巴特勒方法应用于 $$\\mathbb {Z}_p[C_p\\times C_p]$$ -Permutation 模块","authors":"John W. MacQuarrie,&nbsp;Marlon Estanislau","doi":"10.1007/s10468-024-10277-7","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>G</i> be a finite <i>p</i>-group with normal subgroup <span>\\(\\varvec{N}\\)</span> of order <span>\\(\\varvec{p}\\)</span>. The first author and Zalesskii have previously shown that a <span>\\(\\mathbb {Z}_p\\)</span> <span>\\(\\varvec{G}\\)</span>-lattice is a permutation module if, and only if, its <span>\\(\\varvec{N}\\)</span>-invariants, its <span>\\(\\varvec{N}\\)</span>-coinvariants, and a third module are all <i>G</i>/<i>N</i> permutation modules over <span>\\(\\mathbb {Z}_p, \\mathbb {Z}_p\\)</span> and <span>\\(\\mathbb {Z}_p\\)</span> respectively. The necessity of the first two conditions is easily shown but the necessity of the third was not known. We apply a correspondence due to Butler, which associates to a <span>\\(\\mathbb {Z}_p\\)</span> <span>\\(\\varvec{G}\\)</span>-lattice for an abelian <span>\\(\\varvec{p}\\)</span>-group a set of simple combinatorial data, to demonstrate the necessity of the conditions, using the correspondence to construct highly non-trivial counterexamples to the claim that if both the <span>\\(\\varvec{N}\\)</span>-invariants and the <span>\\(\\varvec{N}\\)</span>-coinvariants of a given lattice <span>\\(\\varvec{U}\\)</span> are permutation modules, then so is <span>\\(\\varvec{U}\\)</span>. Our approach, which is new, is to translate the desired properties to the combinatorial side, find the counterexample there, and translate it back to a lattice.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Butler’s Method Applied to \\\\(\\\\mathbb {Z}_p[C_p\\\\times C_p]\\\\)-Permutation Modules\",\"authors\":\"John W. MacQuarrie,&nbsp;Marlon Estanislau\",\"doi\":\"10.1007/s10468-024-10277-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>G</i> be a finite <i>p</i>-group with normal subgroup <span>\\\\(\\\\varvec{N}\\\\)</span> of order <span>\\\\(\\\\varvec{p}\\\\)</span>. The first author and Zalesskii have previously shown that a <span>\\\\(\\\\mathbb {Z}_p\\\\)</span> <span>\\\\(\\\\varvec{G}\\\\)</span>-lattice is a permutation module if, and only if, its <span>\\\\(\\\\varvec{N}\\\\)</span>-invariants, its <span>\\\\(\\\\varvec{N}\\\\)</span>-coinvariants, and a third module are all <i>G</i>/<i>N</i> permutation modules over <span>\\\\(\\\\mathbb {Z}_p, \\\\mathbb {Z}_p\\\\)</span> and <span>\\\\(\\\\mathbb {Z}_p\\\\)</span> respectively. The necessity of the first two conditions is easily shown but the necessity of the third was not known. We apply a correspondence due to Butler, which associates to a <span>\\\\(\\\\mathbb {Z}_p\\\\)</span> <span>\\\\(\\\\varvec{G}\\\\)</span>-lattice for an abelian <span>\\\\(\\\\varvec{p}\\\\)</span>-group a set of simple combinatorial data, to demonstrate the necessity of the conditions, using the correspondence to construct highly non-trivial counterexamples to the claim that if both the <span>\\\\(\\\\varvec{N}\\\\)</span>-invariants and the <span>\\\\(\\\\varvec{N}\\\\)</span>-coinvariants of a given lattice <span>\\\\(\\\\varvec{U}\\\\)</span> are permutation modules, then so is <span>\\\\(\\\\varvec{U}\\\\)</span>. Our approach, which is new, is to translate the desired properties to the combinatorial side, find the counterexample there, and translate it back to a lattice.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-024-10277-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-024-10277-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 G 是一个有限 p 群,具有阶为 \(\varvec{p}\) 的正常子群 \(\varvec{N}\)。第一作者和 Zalesskii 之前已经证明,当且仅当其\(\varvec{N}\)-不变式是一个置换模块时,一个\(\mathbb {Z}_p\) \(\varvec{G}\)-晶格才是一个置换模块、和第三个模块都是分别覆盖 \(\mathbb {Z}_p, \mathbb {Z}_p\) 和 \(\mathbb {Z}_p\)的 G/N 置换模块。前两个条件的必要性很容易证明,但第三个条件的必要性却不为人所知。我们应用了巴特勒提出的一种对应关系,它将一组简单的组合数据关联到一个无性\(\varvec{p}\)-群的\(\mathbb {Z}_p\) \(\varvec{G}\)-晶格,从而证明了这些条件的必要性、利用对应关系来构造高度非难的反例,即如果给定网格 \(\varvec{U}) 的 \(\varvec{N}\)-invariants 和 \(\varvec{N}\)-coinvariants 都是置换模块,那么 \(\varvec{U}\) 也是置换模块。我们的新方法是把所需的性质转换到组合方面,在那里找到反例,然后再把它转换回晶格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Butler’s Method Applied to \(\mathbb {Z}_p[C_p\times C_p]\)-Permutation Modules

Let G be a finite p-group with normal subgroup \(\varvec{N}\) of order \(\varvec{p}\). The first author and Zalesskii have previously shown that a \(\mathbb {Z}_p\) \(\varvec{G}\)-lattice is a permutation module if, and only if, its \(\varvec{N}\)-invariants, its \(\varvec{N}\)-coinvariants, and a third module are all G/N permutation modules over \(\mathbb {Z}_p, \mathbb {Z}_p\) and \(\mathbb {Z}_p\) respectively. The necessity of the first two conditions is easily shown but the necessity of the third was not known. We apply a correspondence due to Butler, which associates to a \(\mathbb {Z}_p\) \(\varvec{G}\)-lattice for an abelian \(\varvec{p}\)-group a set of simple combinatorial data, to demonstrate the necessity of the conditions, using the correspondence to construct highly non-trivial counterexamples to the claim that if both the \(\varvec{N}\)-invariants and the \(\varvec{N}\)-coinvariants of a given lattice \(\varvec{U}\) are permutation modules, then so is \(\varvec{U}\). Our approach, which is new, is to translate the desired properties to the combinatorial side, find the counterexample there, and translate it back to a lattice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信