通过低温退火增强FeCo-MOFs/GO新型纳米线结构的氧进化反应催化特性

IF 3.6 4区 工程技术 Q3 ENERGY & FUELS
Hao Liang, Yangbo Lv, Kui Tang, Yuxin Chai, Yu Yang, Zhi Yang, Yuyang Liu, Jianping Sun
{"title":"通过低温退火增强FeCo-MOFs/GO新型纳米线结构的氧进化反应催化特性","authors":"Hao Liang,&nbsp;Yangbo Lv,&nbsp;Kui Tang,&nbsp;Yuxin Chai,&nbsp;Yu Yang,&nbsp;Zhi Yang,&nbsp;Yuyang Liu,&nbsp;Jianping Sun","doi":"10.1002/ente.202400058","DOIUrl":null,"url":null,"abstract":"<p>\nMetal-organic frameworks (MOFs) often suffer from poor stability, making them suitable precursors for metal oxides/porous carbon catalysts in the oxygen evolution reaction via pyrolysis. High-temperature treatment, however, leads to significant loss of active sites. To address this, Fe-MOFs, FeCo-MOFs, and FeCo-MOFs/graphene oxide (GO) composites using a one-pot hydrothermal method are synthesized and annealed at a low temperature of 300 °C. Characterization reveals that FeCo-MOFs/GO composites possess unique nanowire structures mixed with a small amount of nanoflakes. It is believed that introducing graphene oxide plays a critical role in forming this structure, because the defects in GO provide numerous nucleation sites for nanowire growth. With high specific surface area and good stability, these nanostructures show a low overpotential of 261.5 mV at a current density of 10 mA cm<sup>−</sup><sup>2</sup> and a Tafel slope of 20.47 mV dec<sup>−1</sup> in 1 mol L<sup>−1</sup> KOH alkaline water electrolysis. Density functional theory calculations further indicate that the synergistic effect of Fe and Co atoms enhances the catalytic activity.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Oxygen Evolution Reaction Catalytic Properties of Novel Nanowire Structures from FeCo-MOFs/GO via Low-Temperature Annealing\",\"authors\":\"Hao Liang,&nbsp;Yangbo Lv,&nbsp;Kui Tang,&nbsp;Yuxin Chai,&nbsp;Yu Yang,&nbsp;Zhi Yang,&nbsp;Yuyang Liu,&nbsp;Jianping Sun\",\"doi\":\"10.1002/ente.202400058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>\\nMetal-organic frameworks (MOFs) often suffer from poor stability, making them suitable precursors for metal oxides/porous carbon catalysts in the oxygen evolution reaction via pyrolysis. High-temperature treatment, however, leads to significant loss of active sites. To address this, Fe-MOFs, FeCo-MOFs, and FeCo-MOFs/graphene oxide (GO) composites using a one-pot hydrothermal method are synthesized and annealed at a low temperature of 300 °C. Characterization reveals that FeCo-MOFs/GO composites possess unique nanowire structures mixed with a small amount of nanoflakes. It is believed that introducing graphene oxide plays a critical role in forming this structure, because the defects in GO provide numerous nucleation sites for nanowire growth. With high specific surface area and good stability, these nanostructures show a low overpotential of 261.5 mV at a current density of 10 mA cm<sup>−</sup><sup>2</sup> and a Tafel slope of 20.47 mV dec<sup>−1</sup> in 1 mol L<sup>−1</sup> KOH alkaline water electrolysis. Density functional theory calculations further indicate that the synergistic effect of Fe and Co atoms enhances the catalytic activity.</p>\",\"PeriodicalId\":11573,\"journal\":{\"name\":\"Energy technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ente.202400058\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202400058","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

金属有机框架(MOFs)通常稳定性较差,因此是通过热解进行氧进化反应的金属氧化物/多孔碳催化剂的合适前体。然而,高温处理会导致活性位点大量丧失。为了解决这个问题,我们采用一锅水热法合成了铁-MOFs、铁钴-MOFs 和铁钴-MOFs/氧化石墨烯 (GO) 复合材料,并在 300 °C 的低温下进行了退火处理。表征结果表明,FeCo-MOFs/GO 复合材料具有独特的纳米线结构,并混有少量纳米片。据认为,引入氧化石墨烯在形成这种结构中起到了关键作用,因为 GO 中的缺陷为纳米线的生长提供了大量成核位点。这些纳米结构具有高比表面积和良好的稳定性,在 1 mol L-1 KOH 碱性水电解中,电流密度为 10 mA cm-2 时,过电位低至 261.5 mV,塔菲尔斜率为 20.47 mV dec-1。密度泛函理论计算进一步表明,铁原子和钴原子的协同效应增强了催化活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced Oxygen Evolution Reaction Catalytic Properties of Novel Nanowire Structures from FeCo-MOFs/GO via Low-Temperature Annealing

Enhanced Oxygen Evolution Reaction Catalytic Properties of Novel Nanowire Structures from FeCo-MOFs/GO via Low-Temperature Annealing

Metal-organic frameworks (MOFs) often suffer from poor stability, making them suitable precursors for metal oxides/porous carbon catalysts in the oxygen evolution reaction via pyrolysis. High-temperature treatment, however, leads to significant loss of active sites. To address this, Fe-MOFs, FeCo-MOFs, and FeCo-MOFs/graphene oxide (GO) composites using a one-pot hydrothermal method are synthesized and annealed at a low temperature of 300 °C. Characterization reveals that FeCo-MOFs/GO composites possess unique nanowire structures mixed with a small amount of nanoflakes. It is believed that introducing graphene oxide plays a critical role in forming this structure, because the defects in GO provide numerous nucleation sites for nanowire growth. With high specific surface area and good stability, these nanostructures show a low overpotential of 261.5 mV at a current density of 10 mA cm2 and a Tafel slope of 20.47 mV dec−1 in 1 mol L−1 KOH alkaline water electrolysis. Density functional theory calculations further indicate that the synergistic effect of Fe and Co atoms enhances the catalytic activity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy technology
Energy technology ENERGY & FUELS-
CiteScore
7.00
自引率
5.30%
发文量
0
审稿时长
1.3 months
期刊介绍: Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy. This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g., new concepts of energy generation and conversion; design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers; improvement of existing processes; combination of single components to systems for energy generation; design of systems for energy storage; production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels; concepts and design of devices for energy distribution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信