Sheng Wang, Mengjie Luo, Yuzhu Sun, Congying Wang, Xingfu Song
{"title":"二元体系 NaCl + KCl + CaCl2 + MgCl2 + H2O 中粘度的实验数据和模型建立","authors":"Sheng Wang, Mengjie Luo, Yuzhu Sun, Congying Wang, Xingfu Song","doi":"10.1007/s10953-024-01400-9","DOIUrl":null,"url":null,"abstract":"<div><p>The viscosities of the quinary system NaCl + KCl + CaCl<sub>2</sub> + MgCl<sub>2</sub> + H<sub>2</sub>O and its binary subsystems are measured in the temperature range of 288.15 K-308.15 K. The viscosities of binary solutions of MgCl<sub>2</sub>, NaCl, and CaCl<sub>2</sub> increase with the increase in concentration. In contrast, for the binary solution of KCl, the viscosity decreases with increasing concentration at low temperature and low concentration. The extended Jones–Dole model that incorporates higher-order term parameters is used to fit the viscosity of binary solutions, with a maximum Average Relative Deviation (<i>ARD</i>) of 1.42%. By comparing the values of the Pearson correlation coefficients, it is found that MgCl<sub>2</sub> has the most significant impact on the viscosity of the quinary system MgCl<sub>2</sub> + KCl + NaCl + CaCl<sub>2</sub> + H<sub>2</sub>O, while the impact of KCl is the least. The modified extended Jones–Dole model, with the introduction of parameter <i>G</i><sub><i>i</i></sub>, can accurately predict the quinary system, resulting in a maximum <i>AAD</i> value of 0.63%. Moreover, the Hu model is also applied to predict the viscosity of the quinary system, achieving a maximum <i>ARD</i> value being 1.54%. Compared to the Hu model, the modified extended Jones–Dole model performs better. The viscosity calculation models for the quinary system MgCl<sub>2</sub> + KCl + NaCl + CaCl<sub>2</sub> + H<sub>2</sub>O in this study contribute key parameters for the design and optimization of the potassium chloride production process.</p></div>","PeriodicalId":666,"journal":{"name":"Journal of Solution Chemistry","volume":"53 12","pages":"1656 - 1673"},"PeriodicalIF":1.4000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Data and Modeling of Viscosity in the Quinary System NaCl + KCl + CaCl2 + MgCl2 + H2O\",\"authors\":\"Sheng Wang, Mengjie Luo, Yuzhu Sun, Congying Wang, Xingfu Song\",\"doi\":\"10.1007/s10953-024-01400-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The viscosities of the quinary system NaCl + KCl + CaCl<sub>2</sub> + MgCl<sub>2</sub> + H<sub>2</sub>O and its binary subsystems are measured in the temperature range of 288.15 K-308.15 K. The viscosities of binary solutions of MgCl<sub>2</sub>, NaCl, and CaCl<sub>2</sub> increase with the increase in concentration. In contrast, for the binary solution of KCl, the viscosity decreases with increasing concentration at low temperature and low concentration. The extended Jones–Dole model that incorporates higher-order term parameters is used to fit the viscosity of binary solutions, with a maximum Average Relative Deviation (<i>ARD</i>) of 1.42%. By comparing the values of the Pearson correlation coefficients, it is found that MgCl<sub>2</sub> has the most significant impact on the viscosity of the quinary system MgCl<sub>2</sub> + KCl + NaCl + CaCl<sub>2</sub> + H<sub>2</sub>O, while the impact of KCl is the least. The modified extended Jones–Dole model, with the introduction of parameter <i>G</i><sub><i>i</i></sub>, can accurately predict the quinary system, resulting in a maximum <i>AAD</i> value of 0.63%. Moreover, the Hu model is also applied to predict the viscosity of the quinary system, achieving a maximum <i>ARD</i> value being 1.54%. Compared to the Hu model, the modified extended Jones–Dole model performs better. The viscosity calculation models for the quinary system MgCl<sub>2</sub> + KCl + NaCl + CaCl<sub>2</sub> + H<sub>2</sub>O in this study contribute key parameters for the design and optimization of the potassium chloride production process.</p></div>\",\"PeriodicalId\":666,\"journal\":{\"name\":\"Journal of Solution Chemistry\",\"volume\":\"53 12\",\"pages\":\"1656 - 1673\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solution Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10953-024-01400-9\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solution Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10953-024-01400-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Experimental Data and Modeling of Viscosity in the Quinary System NaCl + KCl + CaCl2 + MgCl2 + H2O
The viscosities of the quinary system NaCl + KCl + CaCl2 + MgCl2 + H2O and its binary subsystems are measured in the temperature range of 288.15 K-308.15 K. The viscosities of binary solutions of MgCl2, NaCl, and CaCl2 increase with the increase in concentration. In contrast, for the binary solution of KCl, the viscosity decreases with increasing concentration at low temperature and low concentration. The extended Jones–Dole model that incorporates higher-order term parameters is used to fit the viscosity of binary solutions, with a maximum Average Relative Deviation (ARD) of 1.42%. By comparing the values of the Pearson correlation coefficients, it is found that MgCl2 has the most significant impact on the viscosity of the quinary system MgCl2 + KCl + NaCl + CaCl2 + H2O, while the impact of KCl is the least. The modified extended Jones–Dole model, with the introduction of parameter Gi, can accurately predict the quinary system, resulting in a maximum AAD value of 0.63%. Moreover, the Hu model is also applied to predict the viscosity of the quinary system, achieving a maximum ARD value being 1.54%. Compared to the Hu model, the modified extended Jones–Dole model performs better. The viscosity calculation models for the quinary system MgCl2 + KCl + NaCl + CaCl2 + H2O in this study contribute key parameters for the design and optimization of the potassium chloride production process.
期刊介绍:
Journal of Solution Chemistry offers a forum for research on the physical chemistry of liquid solutions in such fields as physical chemistry, chemical physics, molecular biology, statistical mechanics, biochemistry, and biophysics. The emphasis is on papers in which the solvent plays a dominant rather than incidental role. Featured topics include experimental investigations of the dielectric, spectroscopic, thermodynamic, transport, or relaxation properties of both electrolytes and nonelectrolytes in liquid solutions.