{"title":"对比分析不同鹰嘴豆品种的籽油特征","authors":"Reetu Singh, Rupam Kumar Bhunia, Monika Mahajan, Anita Babbar, Sudesh Kumar Yadav, Vinay Kumar","doi":"10.1007/s13562-024-00903-2","DOIUrl":null,"url":null,"abstract":"<p>The fatty acid profiling in chickpea remains unexplored and offers relevant knowledge for crop improvement program. In the present work, the metabolite approach has been utilized with mass spectral analysis to metabolite changes in twelve varieties of kabuli as well as desi cultivars (twenty four totals) for fatty acid profiling. The total oil was extracted and found to be higher in all cultivars of kabuli chickpea (3.6–5.3%) as compared to all desi chickpea (3.2–4.6%) cultivars. However, no difference in the refractive indices of desi (1.4755–1.4773) and kabuli (1.4739–1.476) cultivars has been observed. Polyunsaturated fatty acids (PUFAs) were reported to be predominant (kabuli; 50–68.6%, desi; 61.5–72.5%) and monounsaturated (MUFA) (kabuli; 19.9–38.4%, desi; 16.7–26.4%) and saturated fatty acids (SFA) (kabuli; 11–14.9%, desi; 10–11.9%) were relatively low in the oil of all selected cultivars. Among fatty acids, linoleic acid (C18:2), followed by oleic acid (C18:1), was most prevalent in all selected chickpea cultivars. The volatile organic compounds, 9,12-octadecadienoic acid, 9-octadecenoic acid, and hexadecanoic acid have also been detected comparatively high. Similarly, oil contents also detected terpenoids including b-tocopherol, fucosterol, stigmasterol, and stigmata-5, 22-dien-3-ol. This work could offer comprehensive understanding of fatty acid composition in chickpea that could be used further for crop improvement to assess their nutritional importance in human diet and help to draft strategy for improving self-life during storage of flour of chickpea. This key insight of this work could be further harness to identify potential biochemical biomarkers for improving fatty acid content in chickpea seeds for crop improvement.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of seed oil characteristics in contrasting chickpea cultivars\",\"authors\":\"Reetu Singh, Rupam Kumar Bhunia, Monika Mahajan, Anita Babbar, Sudesh Kumar Yadav, Vinay Kumar\",\"doi\":\"10.1007/s13562-024-00903-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The fatty acid profiling in chickpea remains unexplored and offers relevant knowledge for crop improvement program. In the present work, the metabolite approach has been utilized with mass spectral analysis to metabolite changes in twelve varieties of kabuli as well as desi cultivars (twenty four totals) for fatty acid profiling. The total oil was extracted and found to be higher in all cultivars of kabuli chickpea (3.6–5.3%) as compared to all desi chickpea (3.2–4.6%) cultivars. However, no difference in the refractive indices of desi (1.4755–1.4773) and kabuli (1.4739–1.476) cultivars has been observed. Polyunsaturated fatty acids (PUFAs) were reported to be predominant (kabuli; 50–68.6%, desi; 61.5–72.5%) and monounsaturated (MUFA) (kabuli; 19.9–38.4%, desi; 16.7–26.4%) and saturated fatty acids (SFA) (kabuli; 11–14.9%, desi; 10–11.9%) were relatively low in the oil of all selected cultivars. Among fatty acids, linoleic acid (C18:2), followed by oleic acid (C18:1), was most prevalent in all selected chickpea cultivars. The volatile organic compounds, 9,12-octadecadienoic acid, 9-octadecenoic acid, and hexadecanoic acid have also been detected comparatively high. Similarly, oil contents also detected terpenoids including b-tocopherol, fucosterol, stigmasterol, and stigmata-5, 22-dien-3-ol. This work could offer comprehensive understanding of fatty acid composition in chickpea that could be used further for crop improvement to assess their nutritional importance in human diet and help to draft strategy for improving self-life during storage of flour of chickpea. This key insight of this work could be further harness to identify potential biochemical biomarkers for improving fatty acid content in chickpea seeds for crop improvement.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13562-024-00903-2\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13562-024-00903-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Comparative analysis of seed oil characteristics in contrasting chickpea cultivars
The fatty acid profiling in chickpea remains unexplored and offers relevant knowledge for crop improvement program. In the present work, the metabolite approach has been utilized with mass spectral analysis to metabolite changes in twelve varieties of kabuli as well as desi cultivars (twenty four totals) for fatty acid profiling. The total oil was extracted and found to be higher in all cultivars of kabuli chickpea (3.6–5.3%) as compared to all desi chickpea (3.2–4.6%) cultivars. However, no difference in the refractive indices of desi (1.4755–1.4773) and kabuli (1.4739–1.476) cultivars has been observed. Polyunsaturated fatty acids (PUFAs) were reported to be predominant (kabuli; 50–68.6%, desi; 61.5–72.5%) and monounsaturated (MUFA) (kabuli; 19.9–38.4%, desi; 16.7–26.4%) and saturated fatty acids (SFA) (kabuli; 11–14.9%, desi; 10–11.9%) were relatively low in the oil of all selected cultivars. Among fatty acids, linoleic acid (C18:2), followed by oleic acid (C18:1), was most prevalent in all selected chickpea cultivars. The volatile organic compounds, 9,12-octadecadienoic acid, 9-octadecenoic acid, and hexadecanoic acid have also been detected comparatively high. Similarly, oil contents also detected terpenoids including b-tocopherol, fucosterol, stigmasterol, and stigmata-5, 22-dien-3-ol. This work could offer comprehensive understanding of fatty acid composition in chickpea that could be used further for crop improvement to assess their nutritional importance in human diet and help to draft strategy for improving self-life during storage of flour of chickpea. This key insight of this work could be further harness to identify potential biochemical biomarkers for improving fatty acid content in chickpea seeds for crop improvement.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.