可压缩欧拉-麦克斯韦方程的非唯一性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Shunkai Mao, Peng Qu
{"title":"可压缩欧拉-麦克斯韦方程的非唯一性","authors":"Shunkai Mao, Peng Qu","doi":"10.1007/s00526-024-02798-2","DOIUrl":null,"url":null,"abstract":"<p>We consider the Cauchy problem for the isentropic compressible Euler–Maxwell equations under general pressure laws in a three-dimensional periodic domain. For any smooth initial electron density away from the vacuum and smooth equilibrium-charged ion density, we could construct infinitely many <span>\\(\\alpha \\)</span>-Hölder continuous entropy solutions emanating from the same initial data for <span>\\(\\alpha &lt;\\frac{1}{7}\\)</span>. Especially, the electromagnetic field belongs to the Hölder class <span>\\(C^{1,\\alpha }\\)</span>. Furthermore, we provide a continuous entropy solution satisfying the entropy inequality strictly. The proof relies on the convex integration scheme. Due to the constrain of the Maxwell equations, we propose a method of Mikado potential and construct new building blocks.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-uniqueness for the compressible Euler–Maxwell equations\",\"authors\":\"Shunkai Mao, Peng Qu\",\"doi\":\"10.1007/s00526-024-02798-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the Cauchy problem for the isentropic compressible Euler–Maxwell equations under general pressure laws in a three-dimensional periodic domain. For any smooth initial electron density away from the vacuum and smooth equilibrium-charged ion density, we could construct infinitely many <span>\\\\(\\\\alpha \\\\)</span>-Hölder continuous entropy solutions emanating from the same initial data for <span>\\\\(\\\\alpha &lt;\\\\frac{1}{7}\\\\)</span>. Especially, the electromagnetic field belongs to the Hölder class <span>\\\\(C^{1,\\\\alpha }\\\\)</span>. Furthermore, we provide a continuous entropy solution satisfying the entropy inequality strictly. The proof relies on the convex integration scheme. Due to the constrain of the Maxwell equations, we propose a method of Mikado potential and construct new building blocks.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00526-024-02798-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02798-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是三维周期域中一般压力定律下等熵可压缩欧拉-麦克斯韦方程的考奇问题。对于任何远离真空的光滑初始电子密度和光滑平衡带电离子密度,我们都可以构造出无限多的(\α \)-霍尔德连续熵解,这些解都来自于相同的初始数据(\α <\frac{1}{7}\)。特别是,电磁场属于霍尔德类(C^{1,\alpha }\ )。此外,我们还提供了严格满足熵不等式的连续熵解。证明依赖于凸积分方案。由于麦克斯韦方程的约束,我们提出了一种 Mikado 势的方法,并构建了新的构件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-uniqueness for the compressible Euler–Maxwell equations

We consider the Cauchy problem for the isentropic compressible Euler–Maxwell equations under general pressure laws in a three-dimensional periodic domain. For any smooth initial electron density away from the vacuum and smooth equilibrium-charged ion density, we could construct infinitely many \(\alpha \)-Hölder continuous entropy solutions emanating from the same initial data for \(\alpha <\frac{1}{7}\). Especially, the electromagnetic field belongs to the Hölder class \(C^{1,\alpha }\). Furthermore, we provide a continuous entropy solution satisfying the entropy inequality strictly. The proof relies on the convex integration scheme. Due to the constrain of the Maxwell equations, we propose a method of Mikado potential and construct new building blocks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信