基于时间序列重构和指数加权的偏最小二乘法预测垃圾焚烧过程的氮氧化物排放趋势

IF 1.8 4区 工程技术 Q3 ENGINEERING, CHEMICAL
Dr. Zhenghui Li, Prof. Shunchun Yao, Da Chen, Longqian Li, Prof. Zhimin Lu, Prof. Zhuliang Yu
{"title":"基于时间序列重构和指数加权的偏最小二乘法预测垃圾焚烧过程的氮氧化物排放趋势","authors":"Dr. Zhenghui Li,&nbsp;Prof. Shunchun Yao,&nbsp;Da Chen,&nbsp;Longqian Li,&nbsp;Prof. Zhimin Lu,&nbsp;Prof. Zhuliang Yu","doi":"10.1002/ceat.202300524","DOIUrl":null,"url":null,"abstract":"<p>Accurate prediction of nitrogen oxide (NOx) emission is crucial for effectively controlling pollution in municipal solid waste incineration processes. However, it is challenging to construct a NOx emission prediction model with high prediction accuracy and easy engineering application. To address this, this paper proposes a robust and easily applicable NOx emission trend prediction model oriented to engineering applications, utilizing the partial least squares (PLS) method with the time series reconstruction and exponential weighting (TS-EW-PLS). The model is verified using operational data from an actual waste incineration process, and comparative analysis with the PLS model showed that the TS-EW-PLS model achieved a remarkable improvement of 27–38 % in prediction performance.</p>","PeriodicalId":10083,"journal":{"name":"Chemical Engineering & Technology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NOx Emission Trend Prediction for the Waste Incineration Process Based on Partial Least Squares with the Time Series Reconstruction and Exponential Weighting\",\"authors\":\"Dr. Zhenghui Li,&nbsp;Prof. Shunchun Yao,&nbsp;Da Chen,&nbsp;Longqian Li,&nbsp;Prof. Zhimin Lu,&nbsp;Prof. Zhuliang Yu\",\"doi\":\"10.1002/ceat.202300524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Accurate prediction of nitrogen oxide (NOx) emission is crucial for effectively controlling pollution in municipal solid waste incineration processes. However, it is challenging to construct a NOx emission prediction model with high prediction accuracy and easy engineering application. To address this, this paper proposes a robust and easily applicable NOx emission trend prediction model oriented to engineering applications, utilizing the partial least squares (PLS) method with the time series reconstruction and exponential weighting (TS-EW-PLS). The model is verified using operational data from an actual waste incineration process, and comparative analysis with the PLS model showed that the TS-EW-PLS model achieved a remarkable improvement of 27–38 % in prediction performance.</p>\",\"PeriodicalId\":10083,\"journal\":{\"name\":\"Chemical Engineering & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ceat.202300524\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering & Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ceat.202300524","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

准确预测氮氧化物(NOx)的排放量对于有效控制城市固体废物焚烧过程中的污染至关重要。然而,构建一个预测精度高且易于工程应用的氮氧化物排放预测模型是一项挑战。为此,本文利用偏最小二乘法(PLS)与时间序列重构和指数加权法(TS-EW-PLS),提出了一个面向工程应用、稳健且易于应用的氮氧化物排放趋势预测模型。该模型利用实际垃圾焚烧过程中的运行数据进行了验证,与 PLS 模型的比较分析表明,TS-EW-PLS 模型在预测性能方面显著提高了 27-38%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

NOx Emission Trend Prediction for the Waste Incineration Process Based on Partial Least Squares with the Time Series Reconstruction and Exponential Weighting

NOx Emission Trend Prediction for the Waste Incineration Process Based on Partial Least Squares with the Time Series Reconstruction and Exponential Weighting

Accurate prediction of nitrogen oxide (NOx) emission is crucial for effectively controlling pollution in municipal solid waste incineration processes. However, it is challenging to construct a NOx emission prediction model with high prediction accuracy and easy engineering application. To address this, this paper proposes a robust and easily applicable NOx emission trend prediction model oriented to engineering applications, utilizing the partial least squares (PLS) method with the time series reconstruction and exponential weighting (TS-EW-PLS). The model is verified using operational data from an actual waste incineration process, and comparative analysis with the PLS model showed that the TS-EW-PLS model achieved a remarkable improvement of 27–38 % in prediction performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering & Technology
Chemical Engineering & Technology 工程技术-工程:化工
CiteScore
3.80
自引率
4.80%
发文量
315
审稿时长
5.5 months
期刊介绍: This is the journal for chemical engineers looking for first-hand information in all areas of chemical and process engineering. Chemical Engineering & Technology is: Competent with contributions written and refereed by outstanding professionals from around the world. Essential because it is an international forum for the exchange of ideas and experiences. Topical because its articles treat the very latest developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信