Mengen Zhao, Haijun Wang, Kun Liu, Yao Wu, Chunlei Yuan
{"title":"基于表面改性石墨烯纳米片和氮化铝的高介电导热聚偏氟乙烯复合材料","authors":"Mengen Zhao, Haijun Wang, Kun Liu, Yao Wu, Chunlei Yuan","doi":"10.1002/macp.202400020","DOIUrl":null,"url":null,"abstract":"<p>This article provides reports on the method of surface functionalization modification of graphene nanosheets (GNPs) and aluminum nitride (AlN) through polydopamine and silane coupling agents, respectively. This modification achieves excellent dielectric performance of polyvinylidene fluoride (PVDF) composites by ensuring the uniform dispersion of fillers within the matrix. The synergistic effect between surface-modified GNPs and AlN is conducive to increasing polar PVDF crystals and promoting interface polarization. The prepared PVDF/GNPs/AlN composites exhibit a dielectric constant as high as 45 with a dielectric loss of only 0.044. Meanwhile, the enhanced interface compatibility of composite materials, to a certain extent, reduces interface thermal resistance and forms an effective thermal conduction network, which enhances the heat dissipation capability of electronic devices and presents potential application in the dielectric energy storage.</p>","PeriodicalId":18054,"journal":{"name":"Macromolecular Chemistry and Physics","volume":"225 18","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High Dielectric Thermal Conductivity Polyvinylidene Fluoride Composites Based on Surface-Modified Graphene Nanosheets and Aluminum Nitride\",\"authors\":\"Mengen Zhao, Haijun Wang, Kun Liu, Yao Wu, Chunlei Yuan\",\"doi\":\"10.1002/macp.202400020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article provides reports on the method of surface functionalization modification of graphene nanosheets (GNPs) and aluminum nitride (AlN) through polydopamine and silane coupling agents, respectively. This modification achieves excellent dielectric performance of polyvinylidene fluoride (PVDF) composites by ensuring the uniform dispersion of fillers within the matrix. The synergistic effect between surface-modified GNPs and AlN is conducive to increasing polar PVDF crystals and promoting interface polarization. The prepared PVDF/GNPs/AlN composites exhibit a dielectric constant as high as 45 with a dielectric loss of only 0.044. Meanwhile, the enhanced interface compatibility of composite materials, to a certain extent, reduces interface thermal resistance and forms an effective thermal conduction network, which enhances the heat dissipation capability of electronic devices and presents potential application in the dielectric energy storage.</p>\",\"PeriodicalId\":18054,\"journal\":{\"name\":\"Macromolecular Chemistry and Physics\",\"volume\":\"225 18\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Chemistry and Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/macp.202400020\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Chemistry and Physics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/macp.202400020","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
High Dielectric Thermal Conductivity Polyvinylidene Fluoride Composites Based on Surface-Modified Graphene Nanosheets and Aluminum Nitride
This article provides reports on the method of surface functionalization modification of graphene nanosheets (GNPs) and aluminum nitride (AlN) through polydopamine and silane coupling agents, respectively. This modification achieves excellent dielectric performance of polyvinylidene fluoride (PVDF) composites by ensuring the uniform dispersion of fillers within the matrix. The synergistic effect between surface-modified GNPs and AlN is conducive to increasing polar PVDF crystals and promoting interface polarization. The prepared PVDF/GNPs/AlN composites exhibit a dielectric constant as high as 45 with a dielectric loss of only 0.044. Meanwhile, the enhanced interface compatibility of composite materials, to a certain extent, reduces interface thermal resistance and forms an effective thermal conduction network, which enhances the heat dissipation capability of electronic devices and presents potential application in the dielectric energy storage.
期刊介绍:
Macromolecular Chemistry and Physics publishes in all areas of polymer science - from chemistry, physical chemistry, and physics of polymers to polymers in materials science. Beside an attractive mixture of high-quality Full Papers, Trends, and Highlights, the journal offers a unique article type dedicated to young scientists – Talent.