{"title":"用于高负荷周期泵浦应用的大功率二极管激光器堆栈的有限元热模拟","authors":"Mohamed Elattar;Marko Hübner;Martin Wilkens;Arnim Ginolas;Paul Crump","doi":"10.1109/JSTQE.2024.3431293","DOIUrl":null,"url":null,"abstract":"The two-dimensional heat distribution (steady-state and transient) within high-power diode laser stacks is simulated using a newly-developed model, based on finite element analysis and calibrated against prior experimental results. The model is then used to estimate the average temperature and thermal impedance of the stack elements under quasi-continuous-wave pulsed operation and investigate the impact of variations to the pulse conditions (pulse width and duty cycle). It is also used to show how using improved heat-spreading materials and increasing cooling efficiency can significantly reduce thermal impedance, thereby enabling duty cycle and optical power scaling.","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":"31 2: Pwr. and Effic. Scaling in Semiconductor Lasers","pages":"1-7"},"PeriodicalIF":4.3000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite-Element Thermal Simulation of High-Power Diode Laser Stacks for High-Duty-Cycle Pump Applications\",\"authors\":\"Mohamed Elattar;Marko Hübner;Martin Wilkens;Arnim Ginolas;Paul Crump\",\"doi\":\"10.1109/JSTQE.2024.3431293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The two-dimensional heat distribution (steady-state and transient) within high-power diode laser stacks is simulated using a newly-developed model, based on finite element analysis and calibrated against prior experimental results. The model is then used to estimate the average temperature and thermal impedance of the stack elements under quasi-continuous-wave pulsed operation and investigate the impact of variations to the pulse conditions (pulse width and duty cycle). It is also used to show how using improved heat-spreading materials and increasing cooling efficiency can significantly reduce thermal impedance, thereby enabling duty cycle and optical power scaling.\",\"PeriodicalId\":13094,\"journal\":{\"name\":\"IEEE Journal of Selected Topics in Quantum Electronics\",\"volume\":\"31 2: Pwr. and Effic. Scaling in Semiconductor Lasers\",\"pages\":\"1-7\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Selected Topics in Quantum Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10605045/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10605045/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Finite-Element Thermal Simulation of High-Power Diode Laser Stacks for High-Duty-Cycle Pump Applications
The two-dimensional heat distribution (steady-state and transient) within high-power diode laser stacks is simulated using a newly-developed model, based on finite element analysis and calibrated against prior experimental results. The model is then used to estimate the average temperature and thermal impedance of the stack elements under quasi-continuous-wave pulsed operation and investigate the impact of variations to the pulse conditions (pulse width and duty cycle). It is also used to show how using improved heat-spreading materials and increasing cooling efficiency can significantly reduce thermal impedance, thereby enabling duty cycle and optical power scaling.
期刊介绍:
Papers published in the IEEE Journal of Selected Topics in Quantum Electronics fall within the broad field of science and technology of quantum electronics of a device, subsystem, or system-oriented nature. Each issue is devoted to a specific topic within this broad spectrum. Announcements of the topical areas planned for future issues, along with deadlines for receipt of manuscripts, are published in this Journal and in the IEEE Journal of Quantum Electronics. Generally, the scope of manuscripts appropriate to this Journal is the same as that for the IEEE Journal of Quantum Electronics. Manuscripts are published that report original theoretical and/or experimental research results that advance the scientific and technological base of quantum electronics devices, systems, or applications. The Journal is dedicated toward publishing research results that advance the state of the art or add to the understanding of the generation, amplification, modulation, detection, waveguiding, or propagation characteristics of coherent electromagnetic radiation having sub-millimeter and shorter wavelengths. In order to be suitable for publication in this Journal, the content of manuscripts concerned with subject-related research must have a potential impact on advancing the technological base of quantum electronic devices, systems, and/or applications. Potential authors of subject-related research have the responsibility of pointing out this potential impact. System-oriented manuscripts must be concerned with systems that perform a function previously unavailable or that outperform previously established systems that did not use quantum electronic components or concepts. Tutorial and review papers are by invitation only.