ΩS^2$上的离散莫尔斯理论

Lacey Johnson, Kevin Knudson
{"title":"ΩS^2$上的离散莫尔斯理论","authors":"Lacey Johnson, Kevin Knudson","doi":"arxiv-2407.12156","DOIUrl":null,"url":null,"abstract":"A classical result in Morse theory is the determination of the homotopy type\nof the loop space of a manifold. In this paper, we study this result through\nthe lens of discrete Morse theory. This requires a suitable simplicial model\nfor the loop space. Here, we use Milnor's $\\textrm{F}^+\\textrm{K}$ construction\nto model the loop space of the sphere $S^2$, describe a discrete gradient on\nit, and identify a collection of critical cells. We also compute the action of\nthe boundary operator in the Morse complex on these critical cells, showing\nthat they are potential homology generators. A careful analysis allows us to\nrecover the calculation of the first homology of $\\Omega S^2$.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete Morse theory on $ΩS^2$\",\"authors\":\"Lacey Johnson, Kevin Knudson\",\"doi\":\"arxiv-2407.12156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A classical result in Morse theory is the determination of the homotopy type\\nof the loop space of a manifold. In this paper, we study this result through\\nthe lens of discrete Morse theory. This requires a suitable simplicial model\\nfor the loop space. Here, we use Milnor's $\\\\textrm{F}^+\\\\textrm{K}$ construction\\nto model the loop space of the sphere $S^2$, describe a discrete gradient on\\nit, and identify a collection of critical cells. We also compute the action of\\nthe boundary operator in the Morse complex on these critical cells, showing\\nthat they are potential homology generators. A careful analysis allows us to\\nrecover the calculation of the first homology of $\\\\Omega S^2$.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.12156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.12156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

莫尔斯理论的一个经典结果是确定流形环空间的同调类型。在本文中,我们将从离散莫尔斯理论的角度来研究这一结果。这需要为环空间找到合适的简单模。在这里,我们使用米尔诺的$\textrm{F}^+\textrm{K}$构造来模拟球体$S^2$的环空间,描述其上的离散梯度,并识别临界单元集合。我们还计算了莫尔斯复数中边界算子对这些临界单元的作用,证明它们是潜在的同调发生器。通过仔细分析,我们可以恢复 $\Omega S^2$ 的第一同调的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrete Morse theory on $ΩS^2$
A classical result in Morse theory is the determination of the homotopy type of the loop space of a manifold. In this paper, we study this result through the lens of discrete Morse theory. This requires a suitable simplicial model for the loop space. Here, we use Milnor's $\textrm{F}^+\textrm{K}$ construction to model the loop space of the sphere $S^2$, describe a discrete gradient on it, and identify a collection of critical cells. We also compute the action of the boundary operator in the Morse complex on these critical cells, showing that they are potential homology generators. A careful analysis allows us to recover the calculation of the first homology of $\Omega S^2$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信