半代数多持久性的复杂性和速度

Arindam Banerjee, Saugata Basu
{"title":"半代数多持久性的复杂性和速度","authors":"Arindam Banerjee, Saugata Basu","doi":"arxiv-2407.13586","DOIUrl":null,"url":null,"abstract":"Let $\\mathrm{R}$ be a real closed field, $S \\subset \\mathrm{R}^n$ a closed\nand bounded semi-algebraic set and $\\mathbf{f} = (f_1,\\ldots,f_p):S \\rightarrow\n\\mathrm{R}^p$ a continuous semi-algebraic map. We study the poset module\nstructure in homology induced by the simultaneous filtrations of $S$ by the\nsub-level sets of the functions $f_i$ from an algorithmic and quantitative\npoint of view. For fixed dimensional homology we prove a singly exponential\nupper bound on the complexity of these modules which are encoded as certain\nsemi-algebraically constructible functions on $\\mathrm{R}^p \\times\n\\mathrm{R}^p$. We also deduce for semi-algebraic filtrations of bounded\ncomplexity, upper bounds on the number of equivalence classes of finite poset\nmodules that such a filtration induces -- establishing a tight analogy with a\nwell-known graph theoretical result on the \"speed'' of algebraically defined\ngraphs.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complexity and speed of semi-algebraic multi-persistence\",\"authors\":\"Arindam Banerjee, Saugata Basu\",\"doi\":\"arxiv-2407.13586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathrm{R}$ be a real closed field, $S \\\\subset \\\\mathrm{R}^n$ a closed\\nand bounded semi-algebraic set and $\\\\mathbf{f} = (f_1,\\\\ldots,f_p):S \\\\rightarrow\\n\\\\mathrm{R}^p$ a continuous semi-algebraic map. We study the poset module\\nstructure in homology induced by the simultaneous filtrations of $S$ by the\\nsub-level sets of the functions $f_i$ from an algorithmic and quantitative\\npoint of view. For fixed dimensional homology we prove a singly exponential\\nupper bound on the complexity of these modules which are encoded as certain\\nsemi-algebraically constructible functions on $\\\\mathrm{R}^p \\\\times\\n\\\\mathrm{R}^p$. We also deduce for semi-algebraic filtrations of bounded\\ncomplexity, upper bounds on the number of equivalence classes of finite poset\\nmodules that such a filtration induces -- establishing a tight analogy with a\\nwell-known graph theoretical result on the \\\"speed'' of algebraically defined\\ngraphs.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.13586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.13586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $\mathrm{R}$ 是一个实闭域,$S \subset \mathrm{R}^n$ 是一个封闭且有界的半代数集合,而 $\mathbf{f} = (f_1,\ldots,f_p):S \rightarrow\mathrm{R}^p$ 是一个连续的半代数映射。我们从算法和定量的角度研究了由函数 $f_i$ 的子级集同时过滤 $S$ 所引起的同调中的正集模态结构。对于固定维度的同调,我们证明了这些模块复杂性的单指数上界,这些模块被编码为 $\mathrm{R}^p \times\mathrm{R}^p$ 上的某些半代数可构造函数。我们还为复杂度有界的半代数过滤推导出了这种过滤所引起的有限poset模块的等价类数的上界--这与代数定义图的 "速度''"的著名图论结果建立了紧密的类比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complexity and speed of semi-algebraic multi-persistence
Let $\mathrm{R}$ be a real closed field, $S \subset \mathrm{R}^n$ a closed and bounded semi-algebraic set and $\mathbf{f} = (f_1,\ldots,f_p):S \rightarrow \mathrm{R}^p$ a continuous semi-algebraic map. We study the poset module structure in homology induced by the simultaneous filtrations of $S$ by the sub-level sets of the functions $f_i$ from an algorithmic and quantitative point of view. For fixed dimensional homology we prove a singly exponential upper bound on the complexity of these modules which are encoded as certain semi-algebraically constructible functions on $\mathrm{R}^p \times \mathrm{R}^p$. We also deduce for semi-algebraic filtrations of bounded complexity, upper bounds on the number of equivalence classes of finite poset modules that such a filtration induces -- establishing a tight analogy with a well-known graph theoretical result on the "speed'' of algebraically defined graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信