托姆多项式入门指南

Richard Rimanyi
{"title":"托姆多项式入门指南","authors":"Richard Rimanyi","doi":"arxiv-2407.13883","DOIUrl":null,"url":null,"abstract":"The Thom polynomial of a singularity $\\eta$ expresses the cohomology class of\nthe $\\eta$-singularity locus of a map in terms of the map's simple invariants.\nIn this informal survey -- based on two lectures given at the Isaac Newton\nInstitute in 2024 -- we explore various Thom polynomial concepts with examples.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thom polynomials. A primer\",\"authors\":\"Richard Rimanyi\",\"doi\":\"arxiv-2407.13883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Thom polynomial of a singularity $\\\\eta$ expresses the cohomology class of\\nthe $\\\\eta$-singularity locus of a map in terms of the map's simple invariants.\\nIn this informal survey -- based on two lectures given at the Isaac Newton\\nInstitute in 2024 -- we explore various Thom polynomial concepts with examples.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.13883\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.13883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

奇点$\eta$的托姆多项式(Thom polynomial of a singularity $\eta$)用映射的简单不变式表达了映射的奇点位置的同调类。在这个非正式的调查中--基于2024年在艾萨克-牛顿研究所(Isaac NewtonInstitute)的两次讲座--我们用实例探讨了各种托姆多项式的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thom polynomials. A primer
The Thom polynomial of a singularity $\eta$ expresses the cohomology class of the $\eta$-singularity locus of a map in terms of the map's simple invariants. In this informal survey -- based on two lectures given at the Isaac Newton Institute in 2024 -- we explore various Thom polynomial concepts with examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信