通过便捷的策略制备发光且稳定的过氧化物-丙烯酸聚合物复合材料

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
APL Materials Pub Date : 2024-07-19 DOI:10.1063/5.0223656
Jinxin Guo, Jing Wang, Shuang Chen, Peige Tong, Yifei Liu, Yiwei Zhang, Xinping Zhang
{"title":"通过便捷的策略制备发光且稳定的过氧化物-丙烯酸聚合物复合材料","authors":"Jinxin Guo, Jing Wang, Shuang Chen, Peige Tong, Yifei Liu, Yiwei Zhang, Xinping Zhang","doi":"10.1063/5.0223656","DOIUrl":null,"url":null,"abstract":"Perovskite semiconductors have achieved great success during the last decades in the application of solar cells, light-emitting diodes, and photodiodes. Developing strategies to pattern perovskites with high-resolution is crucial to broaden the application scenarios of perovskite displays and on-chip lighting. However, the widely used lithography procedure has the problem of high-cost and complexity. In this study, we demonstrate a method to pattern a luminescent perovskite-acrylic polymer composite that is prepared by direct injection at room temperature. This strategy uses standard photoresists and UV lithography at room temperature, and then the pattern in the photoresists can be easily transferred to the perovskite-acrylic polymer composite. Finally, we can obtain high-quality micron-scale features. Furthermore, we demonstrate the universality of this strategy by adapting perovskite with different color emissions into the composite and patterning it using the same procedure. Another advantage of this patternable perovskite-acrylic polymer composite is its superb water-repellent properties, which are believed to be of great potential in underwater applications.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":"9 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Patterning luminescent and stable perovskite-acrylic polymer composites via a convenient strategy\",\"authors\":\"Jinxin Guo, Jing Wang, Shuang Chen, Peige Tong, Yifei Liu, Yiwei Zhang, Xinping Zhang\",\"doi\":\"10.1063/5.0223656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Perovskite semiconductors have achieved great success during the last decades in the application of solar cells, light-emitting diodes, and photodiodes. Developing strategies to pattern perovskites with high-resolution is crucial to broaden the application scenarios of perovskite displays and on-chip lighting. However, the widely used lithography procedure has the problem of high-cost and complexity. In this study, we demonstrate a method to pattern a luminescent perovskite-acrylic polymer composite that is prepared by direct injection at room temperature. This strategy uses standard photoresists and UV lithography at room temperature, and then the pattern in the photoresists can be easily transferred to the perovskite-acrylic polymer composite. Finally, we can obtain high-quality micron-scale features. Furthermore, we demonstrate the universality of this strategy by adapting perovskite with different color emissions into the composite and patterning it using the same procedure. Another advantage of this patternable perovskite-acrylic polymer composite is its superb water-repellent properties, which are believed to be of great potential in underwater applications.\",\"PeriodicalId\":7985,\"journal\":{\"name\":\"APL Materials\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0223656\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0223656","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

过去几十年来,包晶体半导体在太阳能电池、发光二极管和光电二极管的应用中取得了巨大成功。开发高分辨率的包晶图案策略对于拓宽包晶显示器和片上照明的应用领域至关重要。然而,目前广泛使用的光刻工艺存在成本高和复杂性高的问题。在本研究中,我们展示了一种在室温下通过直接注射制备发光的包光体-丙烯酸聚合物复合材料的图案化方法。该方法使用标准光刻胶,在室温下进行紫外光刻,然后将光刻胶中的图案轻松转移到过氧化物-丙烯酸聚合物复合材料上。最后,我们可以获得高质量的微米级特征。此外,我们还在复合材料中加入了具有不同颜色发射的光致发光体,并使用相同的程序对其进行图案化,从而证明了这一策略的通用性。这种可图案化的磷光体-丙烯酸聚合物复合材料的另一个优点是它具有极佳的憎水性能,相信在水下应用中将大有可为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Patterning luminescent and stable perovskite-acrylic polymer composites via a convenient strategy
Perovskite semiconductors have achieved great success during the last decades in the application of solar cells, light-emitting diodes, and photodiodes. Developing strategies to pattern perovskites with high-resolution is crucial to broaden the application scenarios of perovskite displays and on-chip lighting. However, the widely used lithography procedure has the problem of high-cost and complexity. In this study, we demonstrate a method to pattern a luminescent perovskite-acrylic polymer composite that is prepared by direct injection at room temperature. This strategy uses standard photoresists and UV lithography at room temperature, and then the pattern in the photoresists can be easily transferred to the perovskite-acrylic polymer composite. Finally, we can obtain high-quality micron-scale features. Furthermore, we demonstrate the universality of this strategy by adapting perovskite with different color emissions into the composite and patterning it using the same procedure. Another advantage of this patternable perovskite-acrylic polymer composite is its superb water-repellent properties, which are believed to be of great potential in underwater applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
APL Materials
APL Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
9.60
自引率
3.30%
发文量
199
审稿时长
2 months
期刊介绍: APL Materials features original, experimental research on significant topical issues within the field of materials science. In order to highlight research at the forefront of materials science, emphasis is given to the quality and timeliness of the work. The journal considers theory or calculation when the work is particularly timely and relevant to applications. In addition to regular articles, the journal also publishes Special Topics, which report on cutting-edge areas in materials science, such as Perovskite Solar Cells, 2D Materials, and Beyond Lithium Ion Batteries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信