Fe18Pt82 的压力-体积状态方程

IF 1.2 4区 地球科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Meryem Berrada, Siheng Wang, Bin Chen, Vitali Prakapenka, Stella Chariton, Marc M. Hirschmann, Jie Li
{"title":"Fe18Pt82 的压力-体积状态方程","authors":"Meryem Berrada,&nbsp;Siheng Wang,&nbsp;Bin Chen,&nbsp;Vitali Prakapenka,&nbsp;Stella Chariton,&nbsp;Marc M. Hirschmann,&nbsp;Jie Li","doi":"10.1007/s00269-024-01275-8","DOIUrl":null,"url":null,"abstract":"<div><p>Platinum-iron (Pt-Fe) alloys have long served as oxygen fugacity sensors in high-temperature experiments investigating Earth and planetary interiors, relying on the equilibrium between Fe within the alloy and FeO in coexisting oxides or silicates. Despite their significance, studies on intermediate compositions remain limited. This investigation focuses on compressibility of Fe<sub>18</sub>Pt<sub>82</sub> up to <span>\\(\\sim\\)</span> 40 GPa at ambient temperature and explores the pressure-dependent characteristics of the oxygen fugacity relationship. In-situ X-ray diffraction measurements confirm the stability of the <i>fcc</i> phase in Fe<sub>18</sub>Pt<sub>82</sub> across the pressure range. The fit to the compression data by the third-order Birch–Murnaghan equation of state results in <span>\\({V}_{0}=59.14 \\pm 0.08\\)</span>Å<sup>3</sup>, <span>\\({K}_{0}=266 \\pm 13\\)</span> GPa, and <span>\\({K}_{0}^{\\prime}=4.7 \\pm 0.7\\)</span>. The differences between this fit and the Vinet and Kunc equations of state fall within the range of uncertainty. Comparing results with reported data for other Pt-Fe alloys reveals a nearly linear trend between volume and the Fe content in Pt-Fe alloys at ambient pressure. Unlike more iron-rich alloys, the excess volume of mixing of Fe<sub>18</sub>Pt<sub>82</sub> (<span>\\(\\sim\\)</span> 0.21 cm<sup>3</sup>/mol) remains nearly constant across the examined pressure range. Estimates of the excess Gibbs free energy suggest diminishing non-ideal contributions to thermodynamic activities as pressure increases.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"51 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pressure–volume equation of state of Fe18Pt82\",\"authors\":\"Meryem Berrada,&nbsp;Siheng Wang,&nbsp;Bin Chen,&nbsp;Vitali Prakapenka,&nbsp;Stella Chariton,&nbsp;Marc M. Hirschmann,&nbsp;Jie Li\",\"doi\":\"10.1007/s00269-024-01275-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Platinum-iron (Pt-Fe) alloys have long served as oxygen fugacity sensors in high-temperature experiments investigating Earth and planetary interiors, relying on the equilibrium between Fe within the alloy and FeO in coexisting oxides or silicates. Despite their significance, studies on intermediate compositions remain limited. This investigation focuses on compressibility of Fe<sub>18</sub>Pt<sub>82</sub> up to <span>\\\\(\\\\sim\\\\)</span> 40 GPa at ambient temperature and explores the pressure-dependent characteristics of the oxygen fugacity relationship. In-situ X-ray diffraction measurements confirm the stability of the <i>fcc</i> phase in Fe<sub>18</sub>Pt<sub>82</sub> across the pressure range. The fit to the compression data by the third-order Birch–Murnaghan equation of state results in <span>\\\\({V}_{0}=59.14 \\\\pm 0.08\\\\)</span>Å<sup>3</sup>, <span>\\\\({K}_{0}=266 \\\\pm 13\\\\)</span> GPa, and <span>\\\\({K}_{0}^{\\\\prime}=4.7 \\\\pm 0.7\\\\)</span>. The differences between this fit and the Vinet and Kunc equations of state fall within the range of uncertainty. Comparing results with reported data for other Pt-Fe alloys reveals a nearly linear trend between volume and the Fe content in Pt-Fe alloys at ambient pressure. Unlike more iron-rich alloys, the excess volume of mixing of Fe<sub>18</sub>Pt<sub>82</sub> (<span>\\\\(\\\\sim\\\\)</span> 0.21 cm<sup>3</sup>/mol) remains nearly constant across the examined pressure range. Estimates of the excess Gibbs free energy suggest diminishing non-ideal contributions to thermodynamic activities as pressure increases.</p></div>\",\"PeriodicalId\":20132,\"journal\":{\"name\":\"Physics and Chemistry of Minerals\",\"volume\":\"51 3\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Chemistry of Minerals\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00269-024-01275-8\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Minerals","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00269-024-01275-8","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

长期以来,铂-铁(Pt-Fe)合金一直是研究地球和行星内部的高温实验中的氧逸散传感器,它依赖于合金中的铁与共存氧化物或硅酸盐中的氧化铁之间的平衡。尽管中间成分非常重要,但对它们的研究仍然有限。这项研究的重点是 Fe18Pt82 在环境温度下达到 40 GPa 时的可压缩性,并探索了氧逸散关系随压力变化的特征。原位 X 射线衍射测量证实了 Fe18Pt82 的 fcc 相在整个压力范围内的稳定性。三阶伯奇-默纳汉状态方程对压缩数据的拟合结果为:\({V}_{0}=59.14 \pm 0.08\)Å3, \({K}_{0}=266 \pm 13\) GPa, 和\({K}_{0}^\{prime}=4.7 \pm 0.7\)。这一拟合结果与 Vinet 和 Kunc 状态方程之间的差异在不确定范围之内。将结果与其他铂铁合金的报告数据进行比较,可以发现在常压下,铂铁合金的体积与铁含量之间几乎呈线性趋势。与更多的富铁合金不同,Fe18Pt82 的过量混合体积(0.21 cm3/mol)在所考察的压力范围内几乎保持不变。对过剩吉布斯自由能的估算表明,随着压力的增加,对热力学活动的非理想贡献会逐渐减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Pressure–volume equation of state of Fe18Pt82

Pressure–volume equation of state of Fe18Pt82

Platinum-iron (Pt-Fe) alloys have long served as oxygen fugacity sensors in high-temperature experiments investigating Earth and planetary interiors, relying on the equilibrium between Fe within the alloy and FeO in coexisting oxides or silicates. Despite their significance, studies on intermediate compositions remain limited. This investigation focuses on compressibility of Fe18Pt82 up to \(\sim\) 40 GPa at ambient temperature and explores the pressure-dependent characteristics of the oxygen fugacity relationship. In-situ X-ray diffraction measurements confirm the stability of the fcc phase in Fe18Pt82 across the pressure range. The fit to the compression data by the third-order Birch–Murnaghan equation of state results in \({V}_{0}=59.14 \pm 0.08\)Å3, \({K}_{0}=266 \pm 13\) GPa, and \({K}_{0}^{\prime}=4.7 \pm 0.7\). The differences between this fit and the Vinet and Kunc equations of state fall within the range of uncertainty. Comparing results with reported data for other Pt-Fe alloys reveals a nearly linear trend between volume and the Fe content in Pt-Fe alloys at ambient pressure. Unlike more iron-rich alloys, the excess volume of mixing of Fe18Pt82 (\(\sim\) 0.21 cm3/mol) remains nearly constant across the examined pressure range. Estimates of the excess Gibbs free energy suggest diminishing non-ideal contributions to thermodynamic activities as pressure increases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics and Chemistry of Minerals
Physics and Chemistry of Minerals 地学-材料科学:综合
CiteScore
2.90
自引率
14.30%
发文量
43
审稿时长
3 months
期刊介绍: Physics and Chemistry of Minerals is an international journal devoted to publishing articles and short communications of physical or chemical studies on minerals or solids related to minerals. The aim of the journal is to support competent interdisciplinary work in mineralogy and physics or chemistry. Particular emphasis is placed on applications of modern techniques or new theories and models to interpret atomic structures and physical or chemical properties of minerals. Some subjects of interest are: -Relationships between atomic structure and crystalline state (structures of various states, crystal energies, crystal growth, thermodynamic studies, phase transformations, solid solution, exsolution phenomena, etc.) -General solid state spectroscopy (ultraviolet, visible, infrared, Raman, ESCA, luminescence, X-ray, electron paramagnetic resonance, nuclear magnetic resonance, gamma ray resonance, etc.) -Experimental and theoretical analysis of chemical bonding in minerals (application of crystal field, molecular orbital, band theories, etc.) -Physical properties (magnetic, mechanical, electric, optical, thermodynamic, etc.) -Relations between thermal expansion, compressibility, elastic constants, and fundamental properties of atomic structure, particularly as applied to geophysical problems -Electron microscopy in support of physical and chemical studies -Computational methods in the study of the structure and properties of minerals -Mineral surfaces (experimental methods, structure and properties)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信