超级电容器用活性炭电极的环境影响比较评估

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL
ACS Catalysis Pub Date : 2024-08-12 DOI:10.1039/d4gc02700k
Santamon Luanwuthi , Thanyapak Akkharaamnuay , Arisa Phukhrongthung , Channarong Puchongkawarin
{"title":"超级电容器用活性炭电极的环境影响比较评估","authors":"Santamon Luanwuthi ,&nbsp;Thanyapak Akkharaamnuay ,&nbsp;Arisa Phukhrongthung ,&nbsp;Channarong Puchongkawarin","doi":"10.1039/d4gc02700k","DOIUrl":null,"url":null,"abstract":"<div><p>Activated carbon (AC) is considered as a potential material for electrodes in supercapacitors; however, its production process entails significant emissions to the environment. This study aims to assess the environmental impacts of manufacturing AC and electrodes for supercapacitors from waste materials, utilizing the life cycle assessment (LCA) principles. The process of producing AC involves raw material preparation, hydrothermal carbonization, and chemical activation processes, utilizing potassium hydroxide (KOH) as a chemical agent. The environmental impact of AC production and fabrication of AC electrodes was analyzed using the SimaPro software. A cradle-to-gate study was conducted to analyze the production of 1 kg of AC and one electrode from waste materials, including oil palm leaves, Sesbania, and filter cake, chosen based on the local availability in the study area. Life cycle data were compiled from the laboratory, ecoinvent database, and calculations based on the mass and energy balance. Using the ReCiPe midpoint (H) characterization method, potential environmental impacts were computed across eighteen categories. Sesbania AC exhibited the highest impact across fourteen out of eighteen categories for producing 1 kg of AC, with the largest impact observed in the marine ecotoxicity category due to the presence of KOH in the chemical activation process. For producing 1 farad (F) electrode, Sesbania showed the lowest environmental impact due to its high specific capacitance. Its environmental impacts of producing a 1 F electrode were unexpectedly lower than those of oil palm leaves because the predominant environmental impacts were from hydrothermal carbonization and pretreatment rather than KOH activation. Additionally, Sesbania exhibited significantly higher yields in hydrothermal carbonization, resulting in the use of relatively fewer materials and less energy, thereby leading to reduced impacts compared to other materials. The developed AC electrode showed excellent performance in several environmental impact categories, with AC production being the main contributor.</p></div>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative environmental impact assessment of activated carbon electrodes for supercapacitors†\",\"authors\":\"Santamon Luanwuthi ,&nbsp;Thanyapak Akkharaamnuay ,&nbsp;Arisa Phukhrongthung ,&nbsp;Channarong Puchongkawarin\",\"doi\":\"10.1039/d4gc02700k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Activated carbon (AC) is considered as a potential material for electrodes in supercapacitors; however, its production process entails significant emissions to the environment. This study aims to assess the environmental impacts of manufacturing AC and electrodes for supercapacitors from waste materials, utilizing the life cycle assessment (LCA) principles. The process of producing AC involves raw material preparation, hydrothermal carbonization, and chemical activation processes, utilizing potassium hydroxide (KOH) as a chemical agent. The environmental impact of AC production and fabrication of AC electrodes was analyzed using the SimaPro software. A cradle-to-gate study was conducted to analyze the production of 1 kg of AC and one electrode from waste materials, including oil palm leaves, Sesbania, and filter cake, chosen based on the local availability in the study area. Life cycle data were compiled from the laboratory, ecoinvent database, and calculations based on the mass and energy balance. Using the ReCiPe midpoint (H) characterization method, potential environmental impacts were computed across eighteen categories. Sesbania AC exhibited the highest impact across fourteen out of eighteen categories for producing 1 kg of AC, with the largest impact observed in the marine ecotoxicity category due to the presence of KOH in the chemical activation process. For producing 1 farad (F) electrode, Sesbania showed the lowest environmental impact due to its high specific capacitance. Its environmental impacts of producing a 1 F electrode were unexpectedly lower than those of oil palm leaves because the predominant environmental impacts were from hydrothermal carbonization and pretreatment rather than KOH activation. Additionally, Sesbania exhibited significantly higher yields in hydrothermal carbonization, resulting in the use of relatively fewer materials and less energy, thereby leading to reduced impacts compared to other materials. The developed AC electrode showed excellent performance in several environmental impact categories, with AC production being the main contributor.</p></div>\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1463926224006939\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1463926224006939","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

活性碳(AC)被认为是超级电容器电极的一种潜在材料;然而,其生产过程会向环境排放大量废气。本研究旨在利用生命周期评估(LCA)原理,评估利用废料生产活性炭和超级电容器电极对环境的影响。生产 AC 的过程包括原料制备、水热碳化和化学活化过程,使用氢氧化钾(KOH)作为化学剂。使用 SimaPro 软件分析了交流电生产和交流电电极制造对环境的影响。进行了一项 "从摇篮到终点 "的研究,分析了利用废料生产 1 公斤交流电和一个电极的情况,这些废料包括油棕叶、芝麻和滤饼。生命周期数据来自实验室、ecoinvent 数据库以及基于质量和能量平衡的计算。使用 ReCiPe 中点(H)表征方法,计算了 18 个类别的潜在环境影响。在生产 1 千克交流发电机的十八个类别中,芝麻交流发电机在十四个类别中表现出最高的影响,其中海洋生态毒性类别的影响最大,这是因为在化学活化过程中存在 KOH。就生产 1 法拉(F)电极而言,石杉因其高比电容而对环境的影响最小。生产 1 F 电极对环境的影响出乎意料地低于油棕叶,因为对环境的主要影响来自水热碳化和预处理,而不是 KOH 活化。此外,芝麻在水热碳化过程中的产量明显较高,因此使用的材料和能源相对较少,从而减少了对环境的影响。所开发的交流电电极在多个环境影响类别中表现出色,其中交流电生产是主要影响因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Comparative environmental impact assessment of activated carbon electrodes for supercapacitors†

Comparative environmental impact assessment of activated carbon electrodes for supercapacitors†

Comparative environmental impact assessment of activated carbon electrodes for supercapacitors†

Activated carbon (AC) is considered as a potential material for electrodes in supercapacitors; however, its production process entails significant emissions to the environment. This study aims to assess the environmental impacts of manufacturing AC and electrodes for supercapacitors from waste materials, utilizing the life cycle assessment (LCA) principles. The process of producing AC involves raw material preparation, hydrothermal carbonization, and chemical activation processes, utilizing potassium hydroxide (KOH) as a chemical agent. The environmental impact of AC production and fabrication of AC electrodes was analyzed using the SimaPro software. A cradle-to-gate study was conducted to analyze the production of 1 kg of AC and one electrode from waste materials, including oil palm leaves, Sesbania, and filter cake, chosen based on the local availability in the study area. Life cycle data were compiled from the laboratory, ecoinvent database, and calculations based on the mass and energy balance. Using the ReCiPe midpoint (H) characterization method, potential environmental impacts were computed across eighteen categories. Sesbania AC exhibited the highest impact across fourteen out of eighteen categories for producing 1 kg of AC, with the largest impact observed in the marine ecotoxicity category due to the presence of KOH in the chemical activation process. For producing 1 farad (F) electrode, Sesbania showed the lowest environmental impact due to its high specific capacitance. Its environmental impacts of producing a 1 F electrode were unexpectedly lower than those of oil palm leaves because the predominant environmental impacts were from hydrothermal carbonization and pretreatment rather than KOH activation. Additionally, Sesbania exhibited significantly higher yields in hydrothermal carbonization, resulting in the use of relatively fewer materials and less energy, thereby leading to reduced impacts compared to other materials. The developed AC electrode showed excellent performance in several environmental impact categories, with AC production being the main contributor.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信