Amir Kazemi, Mohammad Hossein Afshari, Hasan Baesmat, Faranak Manteghi, Hafezeh Nabipour, Sohrab Rohani, Mohammad Reza Saeb
{"title":"涂有海藻酸钠的可调 Zn-MOF-74 纳米载体作为多功能药物载体","authors":"Amir Kazemi, Mohammad Hossein Afshari, Hasan Baesmat, Faranak Manteghi, Hafezeh Nabipour, Sohrab Rohani, Mohammad Reza Saeb","doi":"10.1007/s00289-024-05426-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, MOF-74 nanocarriers were coated with sodium alginate (SALG) to enhance physicochemical properties and biocompatibility. Spectroscopic and microscopic analyses showed MOF-74 particle size below 100 nm. Zinc-based MOF-74 nanocarriers (Zn-MOF-74) were developed for doxorubicin (DOX) delivery, achieving high drug loading efficiency (DLE) and drug loading capacity (DLC) as measured by UV–visible spectrometry. Nanocarriers synthesized using zinc acetate (R<sub>A</sub>-MOF-74) achieved a DLE of 96.5% and a DLC of 19.6%, outperforming those prepared with zinc nitrate (R<sub>N</sub>-MOF-74) with a DLE of 88.8% and a DLC of 18.3%. Uncoated samples released cargo rapidly at pH 1.5 and significantly at pH 8. In contrast, SALG-coated samples showed reduced release at pH 1.5 and reached 54.2% release at pH 8 due to alginate’s physicochemical properties. Drug release from DOX@R<sub>A</sub>-MOF-74/ALG was significantly slower and more sustained than from uncoated samples. This study demonstrates the potential of SALG-coated R<sub>A</sub>-MOF-74 as a controlled drug release system for biomedical applications.</p></div>","PeriodicalId":737,"journal":{"name":"Polymer Bulletin","volume":"81 16","pages":"15235 - 15251"},"PeriodicalIF":3.1000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunable Zn-MOF-74 nanocarriers coated with sodium alginate as versatile drug carriers\",\"authors\":\"Amir Kazemi, Mohammad Hossein Afshari, Hasan Baesmat, Faranak Manteghi, Hafezeh Nabipour, Sohrab Rohani, Mohammad Reza Saeb\",\"doi\":\"10.1007/s00289-024-05426-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, MOF-74 nanocarriers were coated with sodium alginate (SALG) to enhance physicochemical properties and biocompatibility. Spectroscopic and microscopic analyses showed MOF-74 particle size below 100 nm. Zinc-based MOF-74 nanocarriers (Zn-MOF-74) were developed for doxorubicin (DOX) delivery, achieving high drug loading efficiency (DLE) and drug loading capacity (DLC) as measured by UV–visible spectrometry. Nanocarriers synthesized using zinc acetate (R<sub>A</sub>-MOF-74) achieved a DLE of 96.5% and a DLC of 19.6%, outperforming those prepared with zinc nitrate (R<sub>N</sub>-MOF-74) with a DLE of 88.8% and a DLC of 18.3%. Uncoated samples released cargo rapidly at pH 1.5 and significantly at pH 8. In contrast, SALG-coated samples showed reduced release at pH 1.5 and reached 54.2% release at pH 8 due to alginate’s physicochemical properties. Drug release from DOX@R<sub>A</sub>-MOF-74/ALG was significantly slower and more sustained than from uncoated samples. This study demonstrates the potential of SALG-coated R<sub>A</sub>-MOF-74 as a controlled drug release system for biomedical applications.</p></div>\",\"PeriodicalId\":737,\"journal\":{\"name\":\"Polymer Bulletin\",\"volume\":\"81 16\",\"pages\":\"15235 - 15251\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Bulletin\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00289-024-05426-3\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Bulletin","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00289-024-05426-3","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Tunable Zn-MOF-74 nanocarriers coated with sodium alginate as versatile drug carriers
In this study, MOF-74 nanocarriers were coated with sodium alginate (SALG) to enhance physicochemical properties and biocompatibility. Spectroscopic and microscopic analyses showed MOF-74 particle size below 100 nm. Zinc-based MOF-74 nanocarriers (Zn-MOF-74) were developed for doxorubicin (DOX) delivery, achieving high drug loading efficiency (DLE) and drug loading capacity (DLC) as measured by UV–visible spectrometry. Nanocarriers synthesized using zinc acetate (RA-MOF-74) achieved a DLE of 96.5% and a DLC of 19.6%, outperforming those prepared with zinc nitrate (RN-MOF-74) with a DLE of 88.8% and a DLC of 18.3%. Uncoated samples released cargo rapidly at pH 1.5 and significantly at pH 8. In contrast, SALG-coated samples showed reduced release at pH 1.5 and reached 54.2% release at pH 8 due to alginate’s physicochemical properties. Drug release from DOX@RA-MOF-74/ALG was significantly slower and more sustained than from uncoated samples. This study demonstrates the potential of SALG-coated RA-MOF-74 as a controlled drug release system for biomedical applications.
期刊介绍:
"Polymer Bulletin" is a comprehensive academic journal on polymer science founded in 1988. It was founded under the initiative of the late Mr. Wang Baoren, a famous Chinese chemist and educator. This journal is co-sponsored by the Chinese Chemical Society, the Institute of Chemistry, and the Chinese Academy of Sciences and is supervised by the China Association for Science and Technology. It is a core journal and is publicly distributed at home and abroad.
"Polymer Bulletin" is a monthly magazine with multiple columns, including a project application guide, outlook, review, research papers, highlight reviews, polymer education and teaching, information sharing, interviews, polymer science popularization, etc. The journal is included in the CSCD Chinese Science Citation Database. It serves as the source journal for Chinese scientific and technological paper statistics and the source journal of Peking University's "Overview of Chinese Core Journals."