Hui Li, Yun Luo, Shu-Zhe Yang, Sheng Guo, Zhe Gao, Jian-Ming Zheng, Ning Ren, Yu-Jin Tong, Hao Luo, Mi Lu
{"title":"分子间氢键交联和立体阻碍效应的协同作用使石榴型 LMFP@C 可用于储存 Li+","authors":"Hui Li, Yun Luo, Shu-Zhe Yang, Sheng Guo, Zhe Gao, Jian-Ming Zheng, Ning Ren, Yu-Jin Tong, Hao Luo, Mi Lu","doi":"10.1007/s12598-024-02914-3","DOIUrl":null,"url":null,"abstract":"<p>LiMn<sub><i>x</i></sub>Fe<sub>1−<i>x</i></sub>PO<sub>4</sub> is a promising cathode candidate due to its high security and the availability of a high 4.1 V operating voltage and high energy density. However, the poor electrochemical kinetics and structural instability currently hinder its broader application. Herein, inspired by the hydrogen-bonded cross-linking and steric hindrance effect between short-chain polymer molecules (polyethylene glycol-400, PEG-400), the pomegranate-type LiMn<sub>0.5</sub>Fe<sub>0.5</sub>PO<sub>4</sub>-0.5@C (P-LMFP@C) cathode materials with 3D ion/electron dual-conductive network structure were constructed through ball mill-assisted spray-drying method. The intermolecular effects of PEG-400 promote the spheroidization and uniform PEG coating of LMFP precursor, which prevents agglomeration during sintering. The 3D ion/electron dual-conductive network structure in P-LMFP@C accelerates the Li<sup>+</sup> transport kinetics, improving the rate performance and cycling stability. As a result, the designed P-LMFP@C has remarkable electrochemical behavior, boasting excellent capacity retention (98% after 100 cycles at the 1C rate) and rate capability (91 mAh·g<sup>−1</sup> at 20C). Such strategy introduces a novel window for designing high-performance olivine cathodes and offers compatibility with a range of energy storage materials for diverse applications.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"80 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic intermolecular hydrogen-bonded cross-linking and steric hindrance effects enabling pomegranate-type LMFP@C for Li+ storage\",\"authors\":\"Hui Li, Yun Luo, Shu-Zhe Yang, Sheng Guo, Zhe Gao, Jian-Ming Zheng, Ning Ren, Yu-Jin Tong, Hao Luo, Mi Lu\",\"doi\":\"10.1007/s12598-024-02914-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>LiMn<sub><i>x</i></sub>Fe<sub>1−<i>x</i></sub>PO<sub>4</sub> is a promising cathode candidate due to its high security and the availability of a high 4.1 V operating voltage and high energy density. However, the poor electrochemical kinetics and structural instability currently hinder its broader application. Herein, inspired by the hydrogen-bonded cross-linking and steric hindrance effect between short-chain polymer molecules (polyethylene glycol-400, PEG-400), the pomegranate-type LiMn<sub>0.5</sub>Fe<sub>0.5</sub>PO<sub>4</sub>-0.5@C (P-LMFP@C) cathode materials with 3D ion/electron dual-conductive network structure were constructed through ball mill-assisted spray-drying method. The intermolecular effects of PEG-400 promote the spheroidization and uniform PEG coating of LMFP precursor, which prevents agglomeration during sintering. The 3D ion/electron dual-conductive network structure in P-LMFP@C accelerates the Li<sup>+</sup> transport kinetics, improving the rate performance and cycling stability. As a result, the designed P-LMFP@C has remarkable electrochemical behavior, boasting excellent capacity retention (98% after 100 cycles at the 1C rate) and rate capability (91 mAh·g<sup>−1</sup> at 20C). Such strategy introduces a novel window for designing high-performance olivine cathodes and offers compatibility with a range of energy storage materials for diverse applications.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\\n\",\"PeriodicalId\":749,\"journal\":{\"name\":\"Rare Metals\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rare Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s12598-024-02914-3\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12598-024-02914-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Synergistic intermolecular hydrogen-bonded cross-linking and steric hindrance effects enabling pomegranate-type LMFP@C for Li+ storage
LiMnxFe1−xPO4 is a promising cathode candidate due to its high security and the availability of a high 4.1 V operating voltage and high energy density. However, the poor electrochemical kinetics and structural instability currently hinder its broader application. Herein, inspired by the hydrogen-bonded cross-linking and steric hindrance effect between short-chain polymer molecules (polyethylene glycol-400, PEG-400), the pomegranate-type LiMn0.5Fe0.5PO4-0.5@C (P-LMFP@C) cathode materials with 3D ion/electron dual-conductive network structure were constructed through ball mill-assisted spray-drying method. The intermolecular effects of PEG-400 promote the spheroidization and uniform PEG coating of LMFP precursor, which prevents agglomeration during sintering. The 3D ion/electron dual-conductive network structure in P-LMFP@C accelerates the Li+ transport kinetics, improving the rate performance and cycling stability. As a result, the designed P-LMFP@C has remarkable electrochemical behavior, boasting excellent capacity retention (98% after 100 cycles at the 1C rate) and rate capability (91 mAh·g−1 at 20C). Such strategy introduces a novel window for designing high-performance olivine cathodes and offers compatibility with a range of energy storage materials for diverse applications.
期刊介绍:
Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.