代数调和稳定半群的正则性

IF 1.1 4区 数学 Q1 MATHEMATICS
Chung-Sik Sin, Kwang-Chol Jo, Se-Ryong Kim
{"title":"代数调和稳定半群的正则性","authors":"Chung-Sik Sin, Kwang-Chol Jo, Se-Ryong Kim","doi":"10.1007/s11587-024-00880-7","DOIUrl":null,"url":null,"abstract":"<p>In the present letter, we deal with the nonlocal operators which are the generators of the tempered stable processes. It is shown that the semigroups generated by the nonlocal operators are analytic in <span>\\(L^p(\\mathbb {R}^d)\\)</span> for any <span>\\(p \\in [1,\\infty )\\)</span>. In particular, the result holds for not only exponentially tempered stable processes but also algebraically tempered ones.</p>","PeriodicalId":21373,"journal":{"name":"Ricerche di Matematica","volume":"336 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularity of algebraically tempered stable semigroups\",\"authors\":\"Chung-Sik Sin, Kwang-Chol Jo, Se-Ryong Kim\",\"doi\":\"10.1007/s11587-024-00880-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the present letter, we deal with the nonlocal operators which are the generators of the tempered stable processes. It is shown that the semigroups generated by the nonlocal operators are analytic in <span>\\\\(L^p(\\\\mathbb {R}^d)\\\\)</span> for any <span>\\\\(p \\\\in [1,\\\\infty )\\\\)</span>. In particular, the result holds for not only exponentially tempered stable processes but also algebraically tempered ones.</p>\",\"PeriodicalId\":21373,\"journal\":{\"name\":\"Ricerche di Matematica\",\"volume\":\"336 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ricerche di Matematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11587-024-00880-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ricerche di Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11587-024-00880-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这封信中,我们讨论了非局部算子,它们是调和稳定过程的产生子。结果表明,对于任意 p (in [1,\infty )\),非局部算子生成的半群在\(L^p(\mathbb {R}^d)\)中是解析的。尤其是,这个结果不仅对指数节制的稳定过程成立,而且对代数节制的稳定过程也成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regularity of algebraically tempered stable semigroups

In the present letter, we deal with the nonlocal operators which are the generators of the tempered stable processes. It is shown that the semigroups generated by the nonlocal operators are analytic in \(L^p(\mathbb {R}^d)\) for any \(p \in [1,\infty )\). In particular, the result holds for not only exponentially tempered stable processes but also algebraically tempered ones.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ricerche di Matematica
Ricerche di Matematica Mathematics-Applied Mathematics
CiteScore
3.00
自引率
8.30%
发文量
61
期刊介绍: “Ricerche di Matematica” publishes high-quality research articles in any field of pure and applied mathematics. Articles must be original and written in English. Details about article submission can be found online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信