BIOMERO:可扩展的图像分析框架

IF 6.7 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
{"title":"BIOMERO:可扩展的图像分析框架","authors":"","doi":"10.1016/j.patter.2024.101024","DOIUrl":null,"url":null,"abstract":"<p>In the rapidly evolving field of bioimaging, the integration and orchestration of findable, accessible, interoperable, and reusable (FAIR) image analysis workflows remains a challenge. We introduce BIOMERO (bioimage analysis in OMERO), a bridge connecting OMERO, a renowned bioimaging data management platform; FAIR workflows; and high-performance computing (HPC) environments. BIOMERO facilitates seamless execution of FAIR workflows, particularly for large datasets from high-content or high-throughput screening. BIOMERO empowers researchers by eliminating the need for specialized knowledge, enabling scalable image processing directly from OMERO. BIOMERO notably supports the sharing and utilization of FAIR workflows between OMERO, Cytomine/BIAFLOWS, and other bioimaging communities. BIOMERO will promote the widespread adoption of FAIR workflows, emphasizing reusability, across the realm of bioimaging research. Its user-friendly interface will empower users, including those without technical expertise, to seamlessly apply these workflows to their datasets, democratizing the utilization of AI by the broader research community.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"1 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BIOMERO: A scalable and extensible image analysis framework\",\"authors\":\"\",\"doi\":\"10.1016/j.patter.2024.101024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the rapidly evolving field of bioimaging, the integration and orchestration of findable, accessible, interoperable, and reusable (FAIR) image analysis workflows remains a challenge. We introduce BIOMERO (bioimage analysis in OMERO), a bridge connecting OMERO, a renowned bioimaging data management platform; FAIR workflows; and high-performance computing (HPC) environments. BIOMERO facilitates seamless execution of FAIR workflows, particularly for large datasets from high-content or high-throughput screening. BIOMERO empowers researchers by eliminating the need for specialized knowledge, enabling scalable image processing directly from OMERO. BIOMERO notably supports the sharing and utilization of FAIR workflows between OMERO, Cytomine/BIAFLOWS, and other bioimaging communities. BIOMERO will promote the widespread adoption of FAIR workflows, emphasizing reusability, across the realm of bioimaging research. Its user-friendly interface will empower users, including those without technical expertise, to seamlessly apply these workflows to their datasets, democratizing the utilization of AI by the broader research community.</p>\",\"PeriodicalId\":36242,\"journal\":{\"name\":\"Patterns\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Patterns\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.patter.2024.101024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2024.101024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在快速发展的生物成像领域,如何整合和协调可查找、可访问、可互操作和可重用(FAIR)的图像分析工作流程仍然是一项挑战。我们介绍了 BIOMERO(OMERO 中的生物图像分析),它是连接著名生物成像数据管理平台 OMERO、FAIR 工作流和高性能计算(HPC)环境的桥梁。BIOMERO促进了FAIR工作流程的无缝执行,特别是对于来自高内容或高通量筛选的大型数据集。BIOMERO 无需专业知识,可直接从 OMERO 进行可扩展的图像处理,从而增强了研究人员的能力。BIOMERO 特别支持在 OMERO、Cytomine/BIAFLOWS 和其他生物成像社区之间共享和利用 FAIR 工作流程。BIOMERO 将促进 FAIR 工作流程在生物成像研究领域的广泛应用,强调可重用性。它的用户友好界面将使用户,包括那些没有专业技术知识的用户,能够将这些工作流程无缝地应用于他们的数据集,从而使更广泛的研究界对人工智能的利用更加民主化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BIOMERO: A scalable and extensible image analysis framework

In the rapidly evolving field of bioimaging, the integration and orchestration of findable, accessible, interoperable, and reusable (FAIR) image analysis workflows remains a challenge. We introduce BIOMERO (bioimage analysis in OMERO), a bridge connecting OMERO, a renowned bioimaging data management platform; FAIR workflows; and high-performance computing (HPC) environments. BIOMERO facilitates seamless execution of FAIR workflows, particularly for large datasets from high-content or high-throughput screening. BIOMERO empowers researchers by eliminating the need for specialized knowledge, enabling scalable image processing directly from OMERO. BIOMERO notably supports the sharing and utilization of FAIR workflows between OMERO, Cytomine/BIAFLOWS, and other bioimaging communities. BIOMERO will promote the widespread adoption of FAIR workflows, emphasizing reusability, across the realm of bioimaging research. Its user-friendly interface will empower users, including those without technical expertise, to seamlessly apply these workflows to their datasets, democratizing the utilization of AI by the broader research community.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Patterns
Patterns Decision Sciences-Decision Sciences (all)
CiteScore
10.60
自引率
4.60%
发文量
153
审稿时长
19 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信