{"title":"基于云的蛋白质折叠识别的隐私保护方法","authors":"","doi":"10.1016/j.patter.2024.101023","DOIUrl":null,"url":null,"abstract":"<p>The complexity and cost of training machine learning models have made cloud-based machine learning as a service (MLaaS) attractive for businesses and researchers. MLaaS eliminates the need for in-house expertise by providing pre-built models and infrastructure. However, it raises data privacy and model security concerns, especially in medical fields like protein fold recognition. We propose a secure three-party computation-based MLaaS solution for privacy-preserving protein fold recognition, protecting both sequence and model privacy. Our efficient private building blocks enable complex operations privately, including addition, multiplication, multiplexer with a different methodology, most-significant bit, modulus conversion, and exact exponential operations. We demonstrate our privacy-preserving recurrent kernel network (RKN) solution, showing that it matches the performance of non-private models. Our scalability analysis indicates linear scalability with RKN parameters, making it viable for real-world deployment. This solution holds promise for converting other medical domain machine learning algorithms to privacy-preserving MLaaS using our building blocks.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"6 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A privacy-preserving approach for cloud-based protein fold recognition\",\"authors\":\"\",\"doi\":\"10.1016/j.patter.2024.101023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The complexity and cost of training machine learning models have made cloud-based machine learning as a service (MLaaS) attractive for businesses and researchers. MLaaS eliminates the need for in-house expertise by providing pre-built models and infrastructure. However, it raises data privacy and model security concerns, especially in medical fields like protein fold recognition. We propose a secure three-party computation-based MLaaS solution for privacy-preserving protein fold recognition, protecting both sequence and model privacy. Our efficient private building blocks enable complex operations privately, including addition, multiplication, multiplexer with a different methodology, most-significant bit, modulus conversion, and exact exponential operations. We demonstrate our privacy-preserving recurrent kernel network (RKN) solution, showing that it matches the performance of non-private models. Our scalability analysis indicates linear scalability with RKN parameters, making it viable for real-world deployment. This solution holds promise for converting other medical domain machine learning algorithms to privacy-preserving MLaaS using our building blocks.</p>\",\"PeriodicalId\":36242,\"journal\":{\"name\":\"Patterns\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Patterns\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.patter.2024.101023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2024.101023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A privacy-preserving approach for cloud-based protein fold recognition
The complexity and cost of training machine learning models have made cloud-based machine learning as a service (MLaaS) attractive for businesses and researchers. MLaaS eliminates the need for in-house expertise by providing pre-built models and infrastructure. However, it raises data privacy and model security concerns, especially in medical fields like protein fold recognition. We propose a secure three-party computation-based MLaaS solution for privacy-preserving protein fold recognition, protecting both sequence and model privacy. Our efficient private building blocks enable complex operations privately, including addition, multiplication, multiplexer with a different methodology, most-significant bit, modulus conversion, and exact exponential operations. We demonstrate our privacy-preserving recurrent kernel network (RKN) solution, showing that it matches the performance of non-private models. Our scalability analysis indicates linear scalability with RKN parameters, making it viable for real-world deployment. This solution holds promise for converting other medical domain machine learning algorithms to privacy-preserving MLaaS using our building blocks.