{"title":"有限应变非弹性力学西莫-米耶模型的基于逼近的隐式积分算法","authors":"A.V. Shutov, K.P. Ufimtsev","doi":"10.1002/nme.7566","DOIUrl":null,"url":null,"abstract":"<p>We propose a simple, efficient, and reliable procedure for implicit time stepping, regarding a special case of the viscoplasticity model proposed by Simo and Miehe (1992). The kinematics of this popular model is based on the multiplicative decomposition of the deformation gradient tensor, allowing for a combination of Newtonian viscosity and arbitrary isotropic hyperelasticity. The algorithm is based on approximation of precomputed solutions. Both Lagrangian and Eulerian versions of the algorithm with equivalent properties are available. The proposed numerical scheme is non-iterative, unconditionally stable, and first order accurate. Moreover, the integration algorithm strictly preserves the inelastic incompressibility constraint, symmetry, positive definiteness, and w-invariance. The accuracy of stress calculations is verified in a series of numerical tests, including non-proportional loading and large strain increments. In terms of stress calculation accuracy, the proposed algorithm is equivalent to the implicit Euler method with strict inelastic incompressibility. The algorithm is implemented into MSC.MARC and a demonstration initial-boundary value problem is solved.</p>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation-based implicit integration algorithm for the Simo-Miehe model of finite-strain inelasticity\",\"authors\":\"A.V. Shutov, K.P. Ufimtsev\",\"doi\":\"10.1002/nme.7566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose a simple, efficient, and reliable procedure for implicit time stepping, regarding a special case of the viscoplasticity model proposed by Simo and Miehe (1992). The kinematics of this popular model is based on the multiplicative decomposition of the deformation gradient tensor, allowing for a combination of Newtonian viscosity and arbitrary isotropic hyperelasticity. The algorithm is based on approximation of precomputed solutions. Both Lagrangian and Eulerian versions of the algorithm with equivalent properties are available. The proposed numerical scheme is non-iterative, unconditionally stable, and first order accurate. Moreover, the integration algorithm strictly preserves the inelastic incompressibility constraint, symmetry, positive definiteness, and w-invariance. The accuracy of stress calculations is verified in a series of numerical tests, including non-proportional loading and large strain increments. In terms of stress calculation accuracy, the proposed algorithm is equivalent to the implicit Euler method with strict inelastic incompressibility. The algorithm is implemented into MSC.MARC and a demonstration initial-boundary value problem is solved.</p>\",\"PeriodicalId\":13699,\"journal\":{\"name\":\"International Journal for Numerical Methods in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/nme.7566\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.7566","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
我们针对 Simo 和 Miehe(1992 年)提出的粘塑性模型的一个特例,提出了一种简单、高效和可靠的隐式时间步进程序。这一流行模型的运动学基于变形梯度张量的乘法分解,允许牛顿粘度和任意各向同性超弹性的结合。该算法基于预计算解的近似。该算法的拉格朗日版本和欧拉版本均具有等效特性。所提出的数值方案是非迭代、无条件稳定和一阶精确的。此外,积分算法严格保留了非弹性不可压缩性约束、对称性、正定性和 w 不变性。应力计算的准确性在一系列数值测试中得到了验证,包括非比例加载和大应变增量。就应力计算精度而言,所提出的算法等同于具有严格非弹性不可压缩性的隐式欧拉法。该算法已在 MSC.MARC 中实现,并解决了一个示范性初始边界值问题。
Approximation-based implicit integration algorithm for the Simo-Miehe model of finite-strain inelasticity
We propose a simple, efficient, and reliable procedure for implicit time stepping, regarding a special case of the viscoplasticity model proposed by Simo and Miehe (1992). The kinematics of this popular model is based on the multiplicative decomposition of the deformation gradient tensor, allowing for a combination of Newtonian viscosity and arbitrary isotropic hyperelasticity. The algorithm is based on approximation of precomputed solutions. Both Lagrangian and Eulerian versions of the algorithm with equivalent properties are available. The proposed numerical scheme is non-iterative, unconditionally stable, and first order accurate. Moreover, the integration algorithm strictly preserves the inelastic incompressibility constraint, symmetry, positive definiteness, and w-invariance. The accuracy of stress calculations is verified in a series of numerical tests, including non-proportional loading and large strain increments. In terms of stress calculation accuracy, the proposed algorithm is equivalent to the implicit Euler method with strict inelastic incompressibility. The algorithm is implemented into MSC.MARC and a demonstration initial-boundary value problem is solved.
期刊介绍:
The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems.
The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.