有限应变弹性的稳定数值计算

IF 2.7 3区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Rezgar Shakeri, Leila Ghaffari, Jeremy L. Thompson, Jed Brown
{"title":"有限应变弹性的稳定数值计算","authors":"Rezgar Shakeri,&nbsp;Leila Ghaffari,&nbsp;Jeremy L. Thompson,&nbsp;Jed Brown","doi":"10.1002/nme.7563","DOIUrl":null,"url":null,"abstract":"<p>A backward stable numerical calculation of a function with condition number <span></span><math>\n <semantics>\n <mrow>\n <mi>κ</mi>\n </mrow>\n <annotation>$$ \\kappa $$</annotation>\n </semantics></math> will have a relative accuracy of <span></span><math>\n <semantics>\n <mrow>\n <mi>κ</mi>\n <msub>\n <mrow>\n <mi>ϵ</mi>\n </mrow>\n <mrow>\n <mtext>machine</mtext>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ \\kappa {\\epsilon}_{\\mathrm{machine}} $$</annotation>\n </semantics></math>. Standard formulations and software implementations of finite-strain elastic materials models make use of the deformation gradient <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n <mo>=</mo>\n <mi>I</mi>\n <mo>+</mo>\n <mi>∂</mi>\n <mi>u</mi>\n <mo>/</mo>\n <mi>∂</mi>\n <mi>X</mi>\n </mrow>\n <annotation>$$ \\boldsymbol{F}=I+\\partial \\boldsymbol{u}/\\partial \\boldsymbol{X} $$</annotation>\n </semantics></math> and Cauchy-Green tensors. These formulations are not numerically stable, leading to loss of several digits of accuracy when used in the small strain regime, and often precluding the use of single precision floating point arithmetic. We trace the source of this instability to specific points of numerical cancellation, interpretable as ill-conditioned steps. We show how to compute various strain measures in a stable way and how to transform common constitutive models to their stable representations, formulated in either initial or current configuration. The stable formulations all provide accuracy of order <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>ϵ</mi>\n </mrow>\n <mrow>\n <mtext>machine</mtext>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\epsilon}_{\\mathrm{machine}} $$</annotation>\n </semantics></math>. In many cases, the stable formulations have elegant representations in terms of appropriate strain measures and offer geometric intuition that is lacking in their standard representation. We show that algorithmic differentiation can stably compute stresses so long as the strain energy is expressed stably, and give principles for stable computation that can be applied to inelastic materials.</p>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stable numerics for finite-strain elasticity\",\"authors\":\"Rezgar Shakeri,&nbsp;Leila Ghaffari,&nbsp;Jeremy L. Thompson,&nbsp;Jed Brown\",\"doi\":\"10.1002/nme.7563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A backward stable numerical calculation of a function with condition number <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>κ</mi>\\n </mrow>\\n <annotation>$$ \\\\kappa $$</annotation>\\n </semantics></math> will have a relative accuracy of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>κ</mi>\\n <msub>\\n <mrow>\\n <mi>ϵ</mi>\\n </mrow>\\n <mrow>\\n <mtext>machine</mtext>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ \\\\kappa {\\\\epsilon}_{\\\\mathrm{machine}} $$</annotation>\\n </semantics></math>. Standard formulations and software implementations of finite-strain elastic materials models make use of the deformation gradient <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>F</mi>\\n <mo>=</mo>\\n <mi>I</mi>\\n <mo>+</mo>\\n <mi>∂</mi>\\n <mi>u</mi>\\n <mo>/</mo>\\n <mi>∂</mi>\\n <mi>X</mi>\\n </mrow>\\n <annotation>$$ \\\\boldsymbol{F}=I+\\\\partial \\\\boldsymbol{u}/\\\\partial \\\\boldsymbol{X} $$</annotation>\\n </semantics></math> and Cauchy-Green tensors. These formulations are not numerically stable, leading to loss of several digits of accuracy when used in the small strain regime, and often precluding the use of single precision floating point arithmetic. We trace the source of this instability to specific points of numerical cancellation, interpretable as ill-conditioned steps. We show how to compute various strain measures in a stable way and how to transform common constitutive models to their stable representations, formulated in either initial or current configuration. The stable formulations all provide accuracy of order <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>ϵ</mi>\\n </mrow>\\n <mrow>\\n <mtext>machine</mtext>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\epsilon}_{\\\\mathrm{machine}} $$</annotation>\\n </semantics></math>. In many cases, the stable formulations have elegant representations in terms of appropriate strain measures and offer geometric intuition that is lacking in their standard representation. We show that algorithmic differentiation can stably compute stresses so long as the strain energy is expressed stably, and give principles for stable computation that can be applied to inelastic materials.</p>\",\"PeriodicalId\":13699,\"journal\":{\"name\":\"International Journal for Numerical Methods in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/nme.7563\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.7563","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

具有条件数的函数的后向稳定数值计算的相对精度为 。 有限应变弹性材料模型的标准公式和软件实现使用变形梯度和考奇-格林张量。这些公式在数值上并不稳定,在小应变机制中使用时会导致几位数的精度损失,而且通常无法使用单精度浮点运算。我们将这种不稳定性的根源追溯到数值抵消的特定点,可解释为条件不良的步骤。我们展示了如何以稳定的方式计算各种应变度量,以及如何将常见的构成模型转换为其稳定的表示形式,并以初始或当前配置进行表述。稳定表述的精度都达到了.级。在许多情况下,稳定公式都可以用适当的应变度量进行优雅的表述,并提供其标准表述所缺乏的几何直观性。我们证明,只要应变能表达稳定,算法微分就能稳定计算应力,并给出了可应用于非弹性材料的稳定计算原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stable numerics for finite-strain elasticity

A backward stable numerical calculation of a function with condition number κ $$ \kappa $$ will have a relative accuracy of κ ϵ machine $$ \kappa {\epsilon}_{\mathrm{machine}} $$ . Standard formulations and software implementations of finite-strain elastic materials models make use of the deformation gradient F = I + u / X $$ \boldsymbol{F}=I+\partial \boldsymbol{u}/\partial \boldsymbol{X} $$ and Cauchy-Green tensors. These formulations are not numerically stable, leading to loss of several digits of accuracy when used in the small strain regime, and often precluding the use of single precision floating point arithmetic. We trace the source of this instability to specific points of numerical cancellation, interpretable as ill-conditioned steps. We show how to compute various strain measures in a stable way and how to transform common constitutive models to their stable representations, formulated in either initial or current configuration. The stable formulations all provide accuracy of order ϵ machine $$ {\epsilon}_{\mathrm{machine}} $$ . In many cases, the stable formulations have elegant representations in terms of appropriate strain measures and offer geometric intuition that is lacking in their standard representation. We show that algorithmic differentiation can stably compute stresses so long as the strain energy is expressed stably, and give principles for stable computation that can be applied to inelastic materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
6.90%
发文量
276
审稿时长
5.3 months
期刊介绍: The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems. The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信