修正用于逼近时分数波方程的高阶数值方法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
M. Ramezani, R. Mokhtari, Y. Yan
{"title":"修正用于逼近时分数波方程的高阶数值方法","authors":"M. Ramezani, R. Mokhtari, Y. Yan","doi":"10.1007/s10915-024-02625-y","DOIUrl":null,"url":null,"abstract":"<p>A high-order time discretization scheme to approximate the time-fractional wave equation with the Caputo fractional derivative of order <span>\\(\\alpha \\in (1, 2)\\)</span> is studied. We establish a high-order formula for approximating the Caputo fractional derivative of order <span>\\(\\alpha \\in (1, 2)\\)</span>. Based on this approximation, we propose a novel numerical method to solve the time-fractional wave equation. Remarkably, this method corrects only one starting step and demonstrates second-order convergence in both homogeneous and inhomogeneous cases, regardless of whether the data is smooth or nonsmooth. We also analyze the stability region associated with the proposed numerical method. Some numerical examples are given to elucidate the convergence analysis.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correction of a High-Order Numerical Method for Approximating Time-Fractional Wave Equation\",\"authors\":\"M. Ramezani, R. Mokhtari, Y. Yan\",\"doi\":\"10.1007/s10915-024-02625-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A high-order time discretization scheme to approximate the time-fractional wave equation with the Caputo fractional derivative of order <span>\\\\(\\\\alpha \\\\in (1, 2)\\\\)</span> is studied. We establish a high-order formula for approximating the Caputo fractional derivative of order <span>\\\\(\\\\alpha \\\\in (1, 2)\\\\)</span>. Based on this approximation, we propose a novel numerical method to solve the time-fractional wave equation. Remarkably, this method corrects only one starting step and demonstrates second-order convergence in both homogeneous and inhomogeneous cases, regardless of whether the data is smooth or nonsmooth. We also analyze the stability region associated with the proposed numerical method. Some numerical examples are given to elucidate the convergence analysis.\\n</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10915-024-02625-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02625-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了一种高阶时间离散化方案来近似具有 \(\alpha \in (1, 2)\)阶卡普托分数导数的时间分数波方程。我们建立了一个近似阶数为\(\alpha \in (1, 2)\)的卡普托分数导数的高阶公式。基于这个近似值,我们提出了一种求解时间分数波方程的新型数值方法。值得注意的是,无论数据是光滑的还是非光滑的,该方法只需修正一个起始步,并且在均质和非均质情况下都表现出二阶收敛性。我们还分析了与所提数值方法相关的稳定区域。我们给出了一些数值示例来阐明收敛性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Correction of a High-Order Numerical Method for Approximating Time-Fractional Wave Equation

Correction of a High-Order Numerical Method for Approximating Time-Fractional Wave Equation

A high-order time discretization scheme to approximate the time-fractional wave equation with the Caputo fractional derivative of order \(\alpha \in (1, 2)\) is studied. We establish a high-order formula for approximating the Caputo fractional derivative of order \(\alpha \in (1, 2)\). Based on this approximation, we propose a novel numerical method to solve the time-fractional wave equation. Remarkably, this method corrects only one starting step and demonstrates second-order convergence in both homogeneous and inhomogeneous cases, regardless of whether the data is smooth or nonsmooth. We also analyze the stability region associated with the proposed numerical method. Some numerical examples are given to elucidate the convergence analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信