Ruili Zhang, Tong Liu, Bin Wang, Jian Liu, Yifa Tang
{"title":"强磁场下相对论带电粒子动力学的结构保持算法及其误差估计","authors":"Ruili Zhang, Tong Liu, Bin Wang, Jian Liu, Yifa Tang","doi":"10.1007/s10915-024-02618-x","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the numerical algorithm and its error estimates for the dynamics of relativistic charged particles under a strong maximal ordering scaling magnetic field. To maintain the fundamental principles of relativistic dynamics, including energy conservation, volume preservation, and the Lorentz invariant property, we construct a structure-preserving algorithm using the splitting scheme. This algorithm ensures the preservation of volume, energy, and the Lorentz invariant property (VELPA) exactly. Specifically, we establish an uniform and optimal error bound in both 4-position and 4-velocity for VELPA. Numerical experiments are also presented to demonstrate the advantages of VELPA in both uniform error estimate and conservation of energy, compared to the implicit Euler method and traditional energy-preserving AVF method.</p>","PeriodicalId":50055,"journal":{"name":"Journal of Scientific Computing","volume":"152 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure-Preserving Algorithm and Its Error Estimate for the Relativistic Charged-Particle Dynamics Under the Strong Magnetic Field\",\"authors\":\"Ruili Zhang, Tong Liu, Bin Wang, Jian Liu, Yifa Tang\",\"doi\":\"10.1007/s10915-024-02618-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper investigates the numerical algorithm and its error estimates for the dynamics of relativistic charged particles under a strong maximal ordering scaling magnetic field. To maintain the fundamental principles of relativistic dynamics, including energy conservation, volume preservation, and the Lorentz invariant property, we construct a structure-preserving algorithm using the splitting scheme. This algorithm ensures the preservation of volume, energy, and the Lorentz invariant property (VELPA) exactly. Specifically, we establish an uniform and optimal error bound in both 4-position and 4-velocity for VELPA. Numerical experiments are also presented to demonstrate the advantages of VELPA in both uniform error estimate and conservation of energy, compared to the implicit Euler method and traditional energy-preserving AVF method.</p>\",\"PeriodicalId\":50055,\"journal\":{\"name\":\"Journal of Scientific Computing\",\"volume\":\"152 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Scientific Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10915-024-02618-x\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02618-x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Structure-Preserving Algorithm and Its Error Estimate for the Relativistic Charged-Particle Dynamics Under the Strong Magnetic Field
This paper investigates the numerical algorithm and its error estimates for the dynamics of relativistic charged particles under a strong maximal ordering scaling magnetic field. To maintain the fundamental principles of relativistic dynamics, including energy conservation, volume preservation, and the Lorentz invariant property, we construct a structure-preserving algorithm using the splitting scheme. This algorithm ensures the preservation of volume, energy, and the Lorentz invariant property (VELPA) exactly. Specifically, we establish an uniform and optimal error bound in both 4-position and 4-velocity for VELPA. Numerical experiments are also presented to demonstrate the advantages of VELPA in both uniform error estimate and conservation of energy, compared to the implicit Euler method and traditional energy-preserving AVF method.
期刊介绍:
Journal of Scientific Computing is an international interdisciplinary forum for the publication of papers on state-of-the-art developments in scientific computing and its applications in science and engineering.
The journal publishes high-quality, peer-reviewed original papers, review papers and short communications on scientific computing.