{"title":"深破碎软岩中道路的分类支持技术:案例研究","authors":"Jieyang Ma, Shihao Tu, Hongsheng Tu, Kaijun Miao, Long Tang, Hongbin Zhao, Benhuan Guo","doi":"10.1007/s42461-024-01048-5","DOIUrl":null,"url":null,"abstract":"<p>This paper addresses the surrounding rock control problem of deep roadways in broken soft rock. The 21914 working face haulage roadway in the Zhangshuanglou coal mine was taken as a case study. The deformation characteristics and failure mechanisms of the roadway surrounding rock were analysed via theoretical analysis and numerical simulation. A classification support technology was proposed and then applied to the studied roadway. This study indicated that the high stresses, mining disturbances and mechanical properties of soft rock resulted in large deformations developed over long periods, leading to the destruction of the deep roadway in the soft rock. The failure depth of the upper goaf floor was 15.84 m, and the development radius of the plastic zone during roadway excavation was 9.55 m. The roadway deformation was positively correlated with the thickness of the interbedded fractured coal and negatively correlated with the thickness of the fractured sandy mudstone. This paper proposed a classification support technology with the main steps of surrounding rock status identification, parameter determination and graded support; the chief support measures were the addition of grout, bolts, anchor cables, steel strips, steel beams and trapezoidal sheds. The field work showed that classification support could effectively restrain the large deformation of the surrounding rock. This research can provide a reference for the stability control of other roadways under similar conditions. </p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification Support Technology for Roadways in Deep Broken Soft Rock: A Case Study\",\"authors\":\"Jieyang Ma, Shihao Tu, Hongsheng Tu, Kaijun Miao, Long Tang, Hongbin Zhao, Benhuan Guo\",\"doi\":\"10.1007/s42461-024-01048-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper addresses the surrounding rock control problem of deep roadways in broken soft rock. The 21914 working face haulage roadway in the Zhangshuanglou coal mine was taken as a case study. The deformation characteristics and failure mechanisms of the roadway surrounding rock were analysed via theoretical analysis and numerical simulation. A classification support technology was proposed and then applied to the studied roadway. This study indicated that the high stresses, mining disturbances and mechanical properties of soft rock resulted in large deformations developed over long periods, leading to the destruction of the deep roadway in the soft rock. The failure depth of the upper goaf floor was 15.84 m, and the development radius of the plastic zone during roadway excavation was 9.55 m. The roadway deformation was positively correlated with the thickness of the interbedded fractured coal and negatively correlated with the thickness of the fractured sandy mudstone. This paper proposed a classification support technology with the main steps of surrounding rock status identification, parameter determination and graded support; the chief support measures were the addition of grout, bolts, anchor cables, steel strips, steel beams and trapezoidal sheds. The field work showed that classification support could effectively restrain the large deformation of the surrounding rock. This research can provide a reference for the stability control of other roadways under similar conditions. </p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s42461-024-01048-5\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42461-024-01048-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Classification Support Technology for Roadways in Deep Broken Soft Rock: A Case Study
This paper addresses the surrounding rock control problem of deep roadways in broken soft rock. The 21914 working face haulage roadway in the Zhangshuanglou coal mine was taken as a case study. The deformation characteristics and failure mechanisms of the roadway surrounding rock were analysed via theoretical analysis and numerical simulation. A classification support technology was proposed and then applied to the studied roadway. This study indicated that the high stresses, mining disturbances and mechanical properties of soft rock resulted in large deformations developed over long periods, leading to the destruction of the deep roadway in the soft rock. The failure depth of the upper goaf floor was 15.84 m, and the development radius of the plastic zone during roadway excavation was 9.55 m. The roadway deformation was positively correlated with the thickness of the interbedded fractured coal and negatively correlated with the thickness of the fractured sandy mudstone. This paper proposed a classification support technology with the main steps of surrounding rock status identification, parameter determination and graded support; the chief support measures were the addition of grout, bolts, anchor cables, steel strips, steel beams and trapezoidal sheds. The field work showed that classification support could effectively restrain the large deformation of the surrounding rock. This research can provide a reference for the stability control of other roadways under similar conditions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.