{"title":"掺镁生物炭通过调节磷的保留、微生物溶解和矿化,增加土壤中磷的可用性","authors":"Muhammed Mustapha Ibrahim, Huiying Lin, Zhaofeng Chang, Zhimin Li, Asif Riaz, Enqing Hou","doi":"10.1007/s42773-024-00360-z","DOIUrl":null,"url":null,"abstract":"<p>Despite fertilization efforts, phosphorus (P) availability in soils remains a major constraint to global plant productivity. Soil incorporation of biochar could promote soil P availability but its effects remain uncertain. To attain further improvements in soil P availability with biochar, we developed, characterized, and evaluated magnesium-oxide (MgO) and sepiolite (Mg<sub>4</sub>Si<sub>6</sub>O<sub>15</sub>(OH)<sub>2</sub>·6H<sub>2</sub>O)-functionalized biochars with optimized P retention/release capacity. Field-based application of these biochars for improving P availability and their mechanisms during three growth stages of maize was investigated. We further leveraged next-generation sequencing to unravel their impacts on the plant growth-stage shifts in soil functional genes regulating P availability. Results showed insignificant variation in P availability between single super phosphate fertilization (F) and its combination with raw biochar (BF). However, the occurrence of Mg-bound minerals on the optimized biochars’ surface adjusted its surface charges and properties and improved the retention and slow release of inorganic P. Compared to BF, available P (AP) was 26.5% and 19.1% higher during the 12-leaf stage and blister stage, respectively, under MgO-optimized biochar + F treatment (MgOBF), and 15.5% higher under sepiolite-biochar + F (SBF) during maize physiological maturity. Cumulatively, AP was 15.6% and 13.2% higher in MgOBF and SBF relative to BF. Hence, plant biomass, grain yield, and P uptake were highest in MgOBF and SBF, respectively at harvest. Optimized-biochar amendment stimulated microbial 16SrRNA gene diversity and suppressed the expression of P starvation response and P uptake and transport-related genes while stimulating P solubilization and mineralization genes. Thus, the optimized biochars promoted P availability via the combined processes of slow-release of retained phosphates, while inducing the microbial solubilization and mineralization of inorganic and organic P, respectively. Our study advances strategies for reducing cropland P limitation and reveals the potential of optimized biochars for improving P availability on the field scale.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"4 1","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnesium-doped biochars increase soil phosphorus availability by regulating phosphorus retention, microbial solubilization and mineralization\",\"authors\":\"Muhammed Mustapha Ibrahim, Huiying Lin, Zhaofeng Chang, Zhimin Li, Asif Riaz, Enqing Hou\",\"doi\":\"10.1007/s42773-024-00360-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Despite fertilization efforts, phosphorus (P) availability in soils remains a major constraint to global plant productivity. Soil incorporation of biochar could promote soil P availability but its effects remain uncertain. To attain further improvements in soil P availability with biochar, we developed, characterized, and evaluated magnesium-oxide (MgO) and sepiolite (Mg<sub>4</sub>Si<sub>6</sub>O<sub>15</sub>(OH)<sub>2</sub>·6H<sub>2</sub>O)-functionalized biochars with optimized P retention/release capacity. Field-based application of these biochars for improving P availability and their mechanisms during three growth stages of maize was investigated. We further leveraged next-generation sequencing to unravel their impacts on the plant growth-stage shifts in soil functional genes regulating P availability. Results showed insignificant variation in P availability between single super phosphate fertilization (F) and its combination with raw biochar (BF). However, the occurrence of Mg-bound minerals on the optimized biochars’ surface adjusted its surface charges and properties and improved the retention and slow release of inorganic P. Compared to BF, available P (AP) was 26.5% and 19.1% higher during the 12-leaf stage and blister stage, respectively, under MgO-optimized biochar + F treatment (MgOBF), and 15.5% higher under sepiolite-biochar + F (SBF) during maize physiological maturity. Cumulatively, AP was 15.6% and 13.2% higher in MgOBF and SBF relative to BF. Hence, plant biomass, grain yield, and P uptake were highest in MgOBF and SBF, respectively at harvest. Optimized-biochar amendment stimulated microbial 16SrRNA gene diversity and suppressed the expression of P starvation response and P uptake and transport-related genes while stimulating P solubilization and mineralization genes. Thus, the optimized biochars promoted P availability via the combined processes of slow-release of retained phosphates, while inducing the microbial solubilization and mineralization of inorganic and organic P, respectively. Our study advances strategies for reducing cropland P limitation and reveals the potential of optimized biochars for improving P availability on the field scale.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":8789,\"journal\":{\"name\":\"Biochar\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochar\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s42773-024-00360-z\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochar","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s42773-024-00360-z","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Magnesium-doped biochars increase soil phosphorus availability by regulating phosphorus retention, microbial solubilization and mineralization
Despite fertilization efforts, phosphorus (P) availability in soils remains a major constraint to global plant productivity. Soil incorporation of biochar could promote soil P availability but its effects remain uncertain. To attain further improvements in soil P availability with biochar, we developed, characterized, and evaluated magnesium-oxide (MgO) and sepiolite (Mg4Si6O15(OH)2·6H2O)-functionalized biochars with optimized P retention/release capacity. Field-based application of these biochars for improving P availability and their mechanisms during three growth stages of maize was investigated. We further leveraged next-generation sequencing to unravel their impacts on the plant growth-stage shifts in soil functional genes regulating P availability. Results showed insignificant variation in P availability between single super phosphate fertilization (F) and its combination with raw biochar (BF). However, the occurrence of Mg-bound minerals on the optimized biochars’ surface adjusted its surface charges and properties and improved the retention and slow release of inorganic P. Compared to BF, available P (AP) was 26.5% and 19.1% higher during the 12-leaf stage and blister stage, respectively, under MgO-optimized biochar + F treatment (MgOBF), and 15.5% higher under sepiolite-biochar + F (SBF) during maize physiological maturity. Cumulatively, AP was 15.6% and 13.2% higher in MgOBF and SBF relative to BF. Hence, plant biomass, grain yield, and P uptake were highest in MgOBF and SBF, respectively at harvest. Optimized-biochar amendment stimulated microbial 16SrRNA gene diversity and suppressed the expression of P starvation response and P uptake and transport-related genes while stimulating P solubilization and mineralization genes. Thus, the optimized biochars promoted P availability via the combined processes of slow-release of retained phosphates, while inducing the microbial solubilization and mineralization of inorganic and organic P, respectively. Our study advances strategies for reducing cropland P limitation and reveals the potential of optimized biochars for improving P availability on the field scale.
期刊介绍:
Biochar stands as a distinguished academic journal delving into multidisciplinary subjects such as agronomy, environmental science, and materials science. Its pages showcase innovative articles spanning the preparation and processing of biochar, exploring its diverse applications, including but not limited to bioenergy production, biochar-based materials for environmental use, soil enhancement, climate change mitigation, contaminated-environment remediation, water purification, new analytical techniques, life cycle assessment, and crucially, rural and regional development. Biochar publishes various article types, including reviews, original research, rapid reports, commentaries, and perspectives, with the overarching goal of reporting significant research achievements, critical reviews fostering a deeper mechanistic understanding of the science, and facilitating academic exchange to drive scientific and technological development.