Rakhi Tiwari, Ahmed E. Abouelregal, Kiran Kumari, Pappu Kumar
{"title":"记忆对热疗过程中接触谐波热的皮肤组织反应的影响","authors":"Rakhi Tiwari, Ahmed E. Abouelregal, Kiran Kumari, Pappu Kumar","doi":"10.1007/s00419-024-02660-z","DOIUrl":null,"url":null,"abstract":"<div><p>The present article contributes a new novel mathematical model influenced with the memory effect that endeavours to record the thermal responses inside a living tissue exposed to an oscillatory heat input on its outer surface. Heat transport inside the tissue is modelled with the hyperbolic equation involving three relaxation times. Analytical solutions of the significant field quantities—temperature, displacement and thermal stress are determined in the frequency domain by adopting the Laplace transform mechanism. Computational results are derived by inverting the field quantities from frequency domain to the physical domain. Memory influences are forecasted on the propagation of the thermo-mechanical waves inside the tissue by obtaining the influences of the kernel functions and time-delay quantity on the physical fields. Impact of the relaxation times is pronounced on the variances of the waves’ constituents. Graphical outcomes speculate that inclusion of the phase lags in heat transfer model supresses and stabilizes the speed of the waves. This study may support to the medical practitioners during thermal therapy and to develop the precised clinical equipment.</p></div>","PeriodicalId":477,"journal":{"name":"Archive of Applied Mechanics","volume":"94 10","pages":"3119 - 3134"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Memory impacts on skin tissue responses exposed to harmonic heat during thermal therapy\",\"authors\":\"Rakhi Tiwari, Ahmed E. Abouelregal, Kiran Kumari, Pappu Kumar\",\"doi\":\"10.1007/s00419-024-02660-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The present article contributes a new novel mathematical model influenced with the memory effect that endeavours to record the thermal responses inside a living tissue exposed to an oscillatory heat input on its outer surface. Heat transport inside the tissue is modelled with the hyperbolic equation involving three relaxation times. Analytical solutions of the significant field quantities—temperature, displacement and thermal stress are determined in the frequency domain by adopting the Laplace transform mechanism. Computational results are derived by inverting the field quantities from frequency domain to the physical domain. Memory influences are forecasted on the propagation of the thermo-mechanical waves inside the tissue by obtaining the influences of the kernel functions and time-delay quantity on the physical fields. Impact of the relaxation times is pronounced on the variances of the waves’ constituents. Graphical outcomes speculate that inclusion of the phase lags in heat transfer model supresses and stabilizes the speed of the waves. This study may support to the medical practitioners during thermal therapy and to develop the precised clinical equipment.</p></div>\",\"PeriodicalId\":477,\"journal\":{\"name\":\"Archive of Applied Mechanics\",\"volume\":\"94 10\",\"pages\":\"3119 - 3134\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive of Applied Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00419-024-02660-z\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive of Applied Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00419-024-02660-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Memory impacts on skin tissue responses exposed to harmonic heat during thermal therapy
The present article contributes a new novel mathematical model influenced with the memory effect that endeavours to record the thermal responses inside a living tissue exposed to an oscillatory heat input on its outer surface. Heat transport inside the tissue is modelled with the hyperbolic equation involving three relaxation times. Analytical solutions of the significant field quantities—temperature, displacement and thermal stress are determined in the frequency domain by adopting the Laplace transform mechanism. Computational results are derived by inverting the field quantities from frequency domain to the physical domain. Memory influences are forecasted on the propagation of the thermo-mechanical waves inside the tissue by obtaining the influences of the kernel functions and time-delay quantity on the physical fields. Impact of the relaxation times is pronounced on the variances of the waves’ constituents. Graphical outcomes speculate that inclusion of the phase lags in heat transfer model supresses and stabilizes the speed of the waves. This study may support to the medical practitioners during thermal therapy and to develop the precised clinical equipment.
期刊介绍:
Archive of Applied Mechanics serves as a platform to communicate original research of scholarly value in all branches of theoretical and applied mechanics, i.e., in solid and fluid mechanics, dynamics and vibrations. It focuses on continuum mechanics in general, structural mechanics, biomechanics, micro- and nano-mechanics as well as hydrodynamics. In particular, the following topics are emphasised: thermodynamics of materials, material modeling, multi-physics, mechanical properties of materials, homogenisation, phase transitions, fracture and damage mechanics, vibration, wave propagation experimental mechanics as well as machine learning techniques in the context of applied mechanics.