{"title":"考虑孔隙和界面过渡区影响的树脂-矿物复合材料弹性模量预测方法","authors":"Hui Li, Hua Huang, Ruotong Wang, Huiyang Huang, Runlan Guo","doi":"10.1007/s00419-024-02647-w","DOIUrl":null,"url":null,"abstract":"<div><p>Resin-mineral composite materials (RMC) have attracted much attention due to their excellent dynamic properties. However, the mechanical models related to RMC have not fully considered the complex interactions between components and interface transition zones (ITZ), and have also given less consideration to the influence of initial defects in the material, resulting in lower prediction accuracy of RMC mechanical models. To address the problem, based on composite sphere model, generalized autonomous method, and improved Mori–Tanaka method, the theoretical prediction model of RMC elastic modulus considering the influence of ITZ and pores is established in this study. Then, based on the micromechanical analysis method and combined with the theoretical data, the numerical prediction model of RMC elastic modulus considering the impact of pores and ITZ is founded. Furthermore, the influence of ITZ, pore, aggregate, and matrix parameters on the elastic modulus of RMC is investigated. The research results indicate that: (1) The error between the predicted RMC effective elastic modulus and the corresponding experimental values is within a reasonable range, indicating that the theoretical and numerical models proposed in this study are theoretically feasible. (2) ITZ and pore parameters have remarkable impact on the effective elastic modulus of RMC, indicating that it is indispensable to take into account ITZ and pores. (3) It is the elastic modulus of RMC that can be sensitive concerning the volume fraction and effective modulus of aggregate and matrix. The research results provide a theoretical basis for the design and application of RMC.</p></div>","PeriodicalId":477,"journal":{"name":"Archive of Applied Mechanics","volume":"94 10","pages":"2859 - 2876"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction method for elastic modulus of resin-mineral composites considering the effects of pores and interfacial transition zones\",\"authors\":\"Hui Li, Hua Huang, Ruotong Wang, Huiyang Huang, Runlan Guo\",\"doi\":\"10.1007/s00419-024-02647-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Resin-mineral composite materials (RMC) have attracted much attention due to their excellent dynamic properties. However, the mechanical models related to RMC have not fully considered the complex interactions between components and interface transition zones (ITZ), and have also given less consideration to the influence of initial defects in the material, resulting in lower prediction accuracy of RMC mechanical models. To address the problem, based on composite sphere model, generalized autonomous method, and improved Mori–Tanaka method, the theoretical prediction model of RMC elastic modulus considering the influence of ITZ and pores is established in this study. Then, based on the micromechanical analysis method and combined with the theoretical data, the numerical prediction model of RMC elastic modulus considering the impact of pores and ITZ is founded. Furthermore, the influence of ITZ, pore, aggregate, and matrix parameters on the elastic modulus of RMC is investigated. The research results indicate that: (1) The error between the predicted RMC effective elastic modulus and the corresponding experimental values is within a reasonable range, indicating that the theoretical and numerical models proposed in this study are theoretically feasible. (2) ITZ and pore parameters have remarkable impact on the effective elastic modulus of RMC, indicating that it is indispensable to take into account ITZ and pores. (3) It is the elastic modulus of RMC that can be sensitive concerning the volume fraction and effective modulus of aggregate and matrix. The research results provide a theoretical basis for the design and application of RMC.</p></div>\",\"PeriodicalId\":477,\"journal\":{\"name\":\"Archive of Applied Mechanics\",\"volume\":\"94 10\",\"pages\":\"2859 - 2876\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive of Applied Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00419-024-02647-w\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive of Applied Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00419-024-02647-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Prediction method for elastic modulus of resin-mineral composites considering the effects of pores and interfacial transition zones
Resin-mineral composite materials (RMC) have attracted much attention due to their excellent dynamic properties. However, the mechanical models related to RMC have not fully considered the complex interactions between components and interface transition zones (ITZ), and have also given less consideration to the influence of initial defects in the material, resulting in lower prediction accuracy of RMC mechanical models. To address the problem, based on composite sphere model, generalized autonomous method, and improved Mori–Tanaka method, the theoretical prediction model of RMC elastic modulus considering the influence of ITZ and pores is established in this study. Then, based on the micromechanical analysis method and combined with the theoretical data, the numerical prediction model of RMC elastic modulus considering the impact of pores and ITZ is founded. Furthermore, the influence of ITZ, pore, aggregate, and matrix parameters on the elastic modulus of RMC is investigated. The research results indicate that: (1) The error between the predicted RMC effective elastic modulus and the corresponding experimental values is within a reasonable range, indicating that the theoretical and numerical models proposed in this study are theoretically feasible. (2) ITZ and pore parameters have remarkable impact on the effective elastic modulus of RMC, indicating that it is indispensable to take into account ITZ and pores. (3) It is the elastic modulus of RMC that can be sensitive concerning the volume fraction and effective modulus of aggregate and matrix. The research results provide a theoretical basis for the design and application of RMC.
期刊介绍:
Archive of Applied Mechanics serves as a platform to communicate original research of scholarly value in all branches of theoretical and applied mechanics, i.e., in solid and fluid mechanics, dynamics and vibrations. It focuses on continuum mechanics in general, structural mechanics, biomechanics, micro- and nano-mechanics as well as hydrodynamics. In particular, the following topics are emphasised: thermodynamics of materials, material modeling, multi-physics, mechanical properties of materials, homogenisation, phase transitions, fracture and damage mechanics, vibration, wave propagation experimental mechanics as well as machine learning techniques in the context of applied mechanics.