带跳跃的高维 PIDE 的时差学习

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Liwei Lu, Hailong Guo, Xu Yang, Yi Zhu
{"title":"带跳跃的高维 PIDE 的时差学习","authors":"Liwei Lu, Hailong Guo, Xu Yang, Yi Zhu","doi":"10.1137/23m1584538","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page C349-C368, August 2024. <br/> Abstract. In this paper, we propose a deep learning framework for solving high-dimensional partial integro-differential equations (PIDEs) based on the temporal difference learning. We introduce a set of Lévy processes and construct a corresponding reinforcement learning model. To simulate the entire process, we use deep neural networks to represent the solutions and nonlocal terms of the equations. Subsequently, we train the networks using the temporal difference error, the termination condition, and properties of the nonlocal terms as the loss function. The relative error of the method reaches [math] in 100-dimensional experiments and [math] in one-dimensional pure jump problems. Additionally, our method demonstrates the advantages of low computational cost and robustness, making it well-suited for addressing problems with different forms and intensities of jumps.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporal Difference Learning for High-Dimensional PIDEs with Jumps\",\"authors\":\"Liwei Lu, Hailong Guo, Xu Yang, Yi Zhu\",\"doi\":\"10.1137/23m1584538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page C349-C368, August 2024. <br/> Abstract. In this paper, we propose a deep learning framework for solving high-dimensional partial integro-differential equations (PIDEs) based on the temporal difference learning. We introduce a set of Lévy processes and construct a corresponding reinforcement learning model. To simulate the entire process, we use deep neural networks to represent the solutions and nonlocal terms of the equations. Subsequently, we train the networks using the temporal difference error, the termination condition, and properties of the nonlocal terms as the loss function. The relative error of the method reaches [math] in 100-dimensional experiments and [math] in one-dimensional pure jump problems. Additionally, our method demonstrates the advantages of low computational cost and robustness, making it well-suited for addressing problems with different forms and intensities of jumps.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1584538\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1584538","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 科学计算期刊》,第 46 卷第 4 期,第 C349-C368 页,2024 年 8 月。 摘要本文提出了一种基于时差学习的深度学习框架,用于求解高维偏微分方程(PIDE)。我们引入了一组莱维过程,并构建了相应的强化学习模型。为了模拟整个过程,我们使用深度神经网络来表示方程的解和非局部项。随后,我们使用时差误差、终止条件和非局部项的属性作为损失函数来训练网络。该方法在 100 维实验中的相对误差达到 [math],在一维纯跳跃问题中的相对误差达到 [math]。此外,我们的方法还具有计算成本低、鲁棒性强等优点,非常适合解决不同形式和强度的跳跃问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Temporal Difference Learning for High-Dimensional PIDEs with Jumps
SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page C349-C368, August 2024.
Abstract. In this paper, we propose a deep learning framework for solving high-dimensional partial integro-differential equations (PIDEs) based on the temporal difference learning. We introduce a set of Lévy processes and construct a corresponding reinforcement learning model. To simulate the entire process, we use deep neural networks to represent the solutions and nonlocal terms of the equations. Subsequently, we train the networks using the temporal difference error, the termination condition, and properties of the nonlocal terms as the loss function. The relative error of the method reaches [math] in 100-dimensional experiments and [math] in one-dimensional pure jump problems. Additionally, our method demonstrates the advantages of low computational cost and robustness, making it well-suited for addressing problems with different forms and intensities of jumps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信