高频亥姆霍兹问题的超定位正交分解

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Philip Freese, Moritz Hauck, Daniel Peterseim
{"title":"高频亥姆霍兹问题的超定位正交分解","authors":"Philip Freese, Moritz Hauck, Daniel Peterseim","doi":"10.1137/21m1465950","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2377-A2397, August 2024. <br/> Abstract. We propose a novel variant of the Localized Orthogonal Decomposition (LOD) method for time-harmonic scattering problems of Helmholtz type with high wavenumber [math]. On a coarse mesh of width [math], the proposed method identifies local finite element source terms that yield rapidly decaying responses under the solution operator. They can be constructed to high accuracy from independent local snapshot solutions on patches of width [math] and are used as problem-adapted basis functions in the method. In contrast to the classical LOD and other state-of-the-art multiscale methods, two- and three-dimensional numerical computations show that the localization error decays super-exponentially as the oversampling parameter [math] is increased. This suggests that optimal convergence is observed under the substantially relaxed oversampling condition [math] with [math] denoting the spatial dimension. Numerical experiments demonstrate the significantly improved offline and online performance of the method also in the case of heterogeneous media and perfectly matched layers.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Super-Localized Orthogonal Decomposition for High-Frequency Helmholtz Problems\",\"authors\":\"Philip Freese, Moritz Hauck, Daniel Peterseim\",\"doi\":\"10.1137/21m1465950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2377-A2397, August 2024. <br/> Abstract. We propose a novel variant of the Localized Orthogonal Decomposition (LOD) method for time-harmonic scattering problems of Helmholtz type with high wavenumber [math]. On a coarse mesh of width [math], the proposed method identifies local finite element source terms that yield rapidly decaying responses under the solution operator. They can be constructed to high accuracy from independent local snapshot solutions on patches of width [math] and are used as problem-adapted basis functions in the method. In contrast to the classical LOD and other state-of-the-art multiscale methods, two- and three-dimensional numerical computations show that the localization error decays super-exponentially as the oversampling parameter [math] is increased. This suggests that optimal convergence is observed under the substantially relaxed oversampling condition [math] with [math] denoting the spatial dimension. Numerical experiments demonstrate the significantly improved offline and online performance of the method also in the case of heterogeneous media and perfectly matched layers.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/21m1465950\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/21m1465950","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 科学计算期刊》,第 46 卷第 4 期,第 A2377-A2397 页,2024 年 8 月。 摘要我们提出了一种局部正交分解(LOD)方法的新变体,用于处理高波数[math]的亥姆霍兹型时谐散射问题。在宽度为[math]的粗网格上,所提出的方法可以识别局部有限元源项,这些源项在求解算子下产生快速衰减的响应。这些源项可以从宽度[数学]补丁上的独立局部快照解中高精度地构建出来,并在该方法中用作问题适配基函数。与经典 LOD 和其他最先进的多尺度方法不同,二维和三维数值计算表明,随着过采样参数[数学]的增加,定位误差呈超指数衰减。这表明,在大幅放宽的超采样条件 [math] ([math] 表示空间维度)下,可以观察到最佳收敛性。数值实验证明,在异质介质和完全匹配层的情况下,该方法的离线和在线性能也有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Super-Localized Orthogonal Decomposition for High-Frequency Helmholtz Problems
SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2377-A2397, August 2024.
Abstract. We propose a novel variant of the Localized Orthogonal Decomposition (LOD) method for time-harmonic scattering problems of Helmholtz type with high wavenumber [math]. On a coarse mesh of width [math], the proposed method identifies local finite element source terms that yield rapidly decaying responses under the solution operator. They can be constructed to high accuracy from independent local snapshot solutions on patches of width [math] and are used as problem-adapted basis functions in the method. In contrast to the classical LOD and other state-of-the-art multiscale methods, two- and three-dimensional numerical computations show that the localization error decays super-exponentially as the oversampling parameter [math] is increased. This suggests that optimal convergence is observed under the substantially relaxed oversampling condition [math] with [math] denoting the spatial dimension. Numerical experiments demonstrate the significantly improved offline and online performance of the method also in the case of heterogeneous media and perfectly matched layers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信